Patents Examined by Jesse Bogue
  • Patent number: 10132424
    Abstract: A variable flow valve assembly is disclosed, and includes a main body, a piston, a position sensor, a controller, a solenoid, and a cover. The main body defines a chamber, an inlet port, an outlet port, and a wall located between the inlet port and the outlet port. The wall defines a metering orifice for selectively allowing a medium to flow from the inlet port to the outlet port. The chamber of the main body includes a pressurized chamber. The piston is moveable within the chamber of the main body in a plurality of partially open positions to vary the amount of medium flowing through the modulation orifice. The piston separates the pressurized chamber from the inlet port. The position sensor determines the position of the piston within the chamber of the main body, and the controller is in signal communication with the position sensor.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: November 20, 2018
    Assignee: Dayco IP Holdings, LLC
    Inventors: Brian M. Graichen, David E. Fletcher, James H. Miller, Keith Hampton
  • Patent number: 10132330
    Abstract: A system is provided, including an airfoil. The airfoil includes a first suction portion of a nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y, and Z of a suction side as set forth in TABLE I to a maximum of three decimal places, wherein the X and Y values of the suction side are coordinate values that couple together to define suction side sections of the first suction portion of the nominal airfoil profile at each Z coordinate value, the suction side sections of the first suction portion of the nominal airfoil profile are coupled together to define the first suction portion, the airfoil includes an airfoil length along a Z axis, the first suction portion comprises a first portion length along the Z axis, the first portion length is less than or equal to the airfoil length, and the Cartesian coordinate values of X, Y, and Z are non-dimensional values convertible to dimensional distances.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: November 20, 2018
    Assignee: General Electric Company
    Inventors: Prabakaran Modachur Krishnan, Dwight Eric Davidson
  • Patent number: 10125609
    Abstract: The invention relates to mechanical engineering. The present device for obtaining mechanical work from a non-thermal energy source comprises a cylindrical housing, a rotor, a vacuum chamber, movable elements, and systems for removal and supply of a working fluid. The rotor is provided with blades and is fastened to the power shaft, disposed inside the housing. The chamber is formed by the outside surface of the bladed rotor and the inside surface of the housing. The movable elements are mounted in diametric opposition inside the housing of the device and divide the chamber into equal parts. The shaft and blades of the rotor are hollow. The inlet ports and outlet ports are provided in surfaces of the rotor blades. Or outlet ports are provided in the housing. The technical result is an increase in the output, efficiency and environmental friendliness of the device, together with a simplified design.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 13, 2018
    Inventors: Igor Mykolaiovych Dubynskyi, Andrey Igorevich Dubinskiy
  • Patent number: 10113536
    Abstract: Methods of arranging and operating a molten salt solar thermal energy system are disclosed. Molten salt flows from a set of cold storage tanks to solar receivers which heat the molten salt to a maximum temperature of about 850° F. The heated molten salt is sent to a set of hot storage tanks. The heated molten salt is then pumped to a steam generation system to produce steam for process and/or power generation. Lower salt temperatures are useful in processes that use lower steam temperatures, such as thermal desalination. Lower salt temperatures and low chloride molten salt reduce the corrosion potential, permitting the use of lower cost alloys for the solar receivers, hot storage tanks, salt pumps, piping and instrumentation and steam generation system. Multiple sets of modular, shop assembled storage tanks are also used to reduce the amount of salt piping, simplify draining, and reduce field assembly and plant cost.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: October 30, 2018
    Assignee: THE BABCOCK & WILCOX COMPANY
    Inventors: David T Wasyluk, Kiplin C Alexander, Kenneth L Santelmann, Jason M Marshall
  • Patent number: 10107142
    Abstract: A disclosed lubrication system for turbofan engine includes a primary lubricant circuit, a primary pump driving lubricant through the primary circuit, an auxiliary lubricant circuit in communication with the primary lubricant circuit and an auxiliary lubricant pump driving lubricant through the auxiliary lubricant circuit. A first valve downstream of an outlet of auxiliary lubricant pump separates the auxiliary lubricant circuit from the primary lubricant circuit. A sensor is disposed within the auxiliary lubricant circuit for sensing pressure within the auxiliary lubricant circuit separate from a pressure within the primary lubricant circuit.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: October 23, 2018
    Assignee: United Technologies Corporation
    Inventors: Jacob Peter Mastro, Francis Parnin
  • Patent number: 10100739
    Abstract: A gas turbine engine includes a compressor section, a combustor fluidly connected to the compressor section via a primary flowpath and a turbine section fluidly connected to the combustor via the primary flowpath. Also included is a cascading cooling system having a first inlet connected to a first compressor bleed, a second inlet connected to a second compressor bleed downstream of the first compressor bleed, and a third inlet connected to a third compressor bleed downstream of the second compressor bleed. The cascading cooling system includes at least one heat exchanger configured to incrementally generate cooling air for at least one of an aft compressor stage and a foremost turbine stage relative to fluid flow through the turbine section.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: October 16, 2018
    Assignee: United Technologies Corporation
    Inventors: Daniel Bernard Kupratis, Paul R. Hanrahan
  • Patent number: 10094275
    Abstract: A system includes a hybrid power plant controller programmed to receive a plurality of signals representative of one or more operating parameters of a hybrid power plant. The hybrid power plant includes at least one gas turbine engine, at least one gas engine, and at least one catalyst system. The hybrid power plant controller is programmed to utilize closed-loop optimal control to generate one or more operational setpoints based on the one or more operating parameters for the hybrid power plant to optimize performance of the hybrid power plant. The hybrid power plant controller uses closed-loop optimal control to provide the one or more operational setpoints to respective controllers of the at least one gas turbine engine, the at least one gas engine, and the at least one catalyst system to control operation of the gas turbine engine, the gas engine, and the catalyst system.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: October 9, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Maruthi Narasinga Rao Devarakonda, Rachel Tarvin Farr
  • Patent number: 10094290
    Abstract: A two-shaft gas turbine is provided which includes: a compressor; a combustor having multiple fuel systems and generating combustion gas by combusting fuels from the fuel systems and air compressed by the compressor; a high-pressure turbine coupled coaxially with the compressor and rotated by the combustion gas; a low-pressure turbine having a shaft structure independent of the high-pressure turbine and rotated by exhaust gas from the high-pressure turbine; an air extraction channel for extracting the air compressed by the compressor; an injection flow channel for feeding the air extracted through the air extraction channel back to the combustor; and a controller for controlling the flow rate of the fuel supplied to each of the fuel systems based on the air flow rate of the compressor, on the flow rate of the fuel supplied to the combustor, and on the temperature of the air in the injection flow channel.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: October 9, 2018
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Tomomi Koganezawa, Kazuki Abe
  • Patent number: 10094280
    Abstract: A process for treating a waste feedstock using a gasifier and the gasifier for same. Hot exhaust from an engine travels through a series of hollow heating plates stacked vertically within a gasifier reactor with spaces between each set of successive heating plates forming reaction zones. Each reaction zone is divided into an upper treatment area and a lower treatment area by a rotating disk. Waste material travels from an outer feed spot along the top surface of the rotating disk radially inwardly to a drop area located at the radially innermost portion where it drops to the top surface of the hollow heating plate below. The waste material is then conveyed radially outward to a chute to the next reaction zone or once fully processed to an exit from the reactor. Vapors from the waste material are drawn off each reaction zone through an outlet for further processing.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: October 9, 2018
    Inventors: Darrell Ford, Ken Davison
  • Patent number: 10087801
    Abstract: An airflow control system for a gas turbine system according to an embodiment includes: an airflow generation system for attachment to a rotatable expander shaft of a gas turbine system, downstream of the gas turbine system, for drawing in a flow of ambient air through an air intake section into a mixing area; and an eductor nozzle for attachment to a downstream end of the turbine component for receiving an exhaust gas stream produced by the gas turbine system and for drawing in a flow of ambient air through the air intake section into the mixing area, the exhaust gas stream passing through the eductor nozzle into the mixing area; wherein, in the mixing area, the exhaust gas stream mixes with the flow of ambient air drawn in by the airflow generation system and the flow of ambient air drawn in by the eductor nozzle to reduce a temperature of the exhaust gas stream.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: October 2, 2018
    Assignee: General Electric Company
    Inventors: Parag Prakash Kulkarni, Lewis Berkley Davis, Jr., Robert Joseph Reed, Raub Warfield Smith
  • Patent number: 10087837
    Abstract: A process for treating a waste feedstock using a gasifier and the gasifier for same. Hot exhaust from an engine travels through a series of hollow heating plates stacked vertically within a gasifier reactor with spaces between each set of successive heating plates forming reaction zones. Each reaction zone is divided into an upper treatment area and a lower treatment area by a rotating disk. Waste material travels from an outer feed spot along the top surface of the rotating disk radially inwardly to a drop area located at the radially innermost portion where it drops to the top surface of the hollow heating plate below. The waste material is then conveyed radially outward to a chute to the next reaction zone or once fully processed to an exit from the reactor. Vapors from the waste material are drawn off each reaction zone through an outlet for further processing.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: October 2, 2018
    Inventors: Darrell Ford, Ken Davison
  • Patent number: 10082444
    Abstract: A method for detecting a failure in a fuel return valve of an aircraft engine fuel circuit, the fuel circuit including a fuel tank, an engine fuel system connected to the fuel tank capable of delivering a flow of fuel to the engine depending on a speed of the engine, a fuel return pipe connected between the engine fuel system and the fuel tank, a fuel return valve arranged to switch between an open and closed position, the valve being capable of blocking the fuel return pipe in the closed position, and of bringing the fuel return pipe into communication with the fuel tank in the open position, the method including measuring a pressure of the flow of fuel from the fuel tank, and if the measured pressure is lower than a predefined threshold, measuring the engine speed.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: September 25, 2018
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Antoine Veyrat-Masson, Nicolas Gomes, Lauranne Mottet
  • Patent number: 10077694
    Abstract: An airflow control system for a combined cycle turbomachine system according to an embodiment includes: an airflow generation system for attachment to a rotatable shaft of a gas turbine system, the airflow generation system drawing in an excess flow of air through an air intake section; a mixing area for receiving an exhaust gas stream produced by the gas turbine system; an air extraction system for extracting a first portion of the excess flow of air to provide bypass air, and for diverting the bypass air into the mixing area to reduce a temperature of the exhaust gas stream; diverting a second portion of the excess flow of air into the compressor component; and in response to an increase in a temperature of the air, increasing the second portion of the excess flow of air diverted into the compressor component.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: September 18, 2018
    Assignee: General Electric Company
    Inventors: Lewis Berkley Davis, Jr., Parag Prakash Kulkarni, Robert Joseph Reed
  • Patent number: 10077727
    Abstract: A fuel control module controls fuel injection of an engine based on a predetermined lean air/fuel ratio. The predetermined lean air/fuel ratio is fuel lean relative to a stoichiometric air/fuel ratio for the fuel. A cylinder control module selectively deactivates opening of intake and exhaust valves of M cylinders of the engine to increase removal of nitrogen oxide (NOx) from exhaust. M is an integer greater than 0 and less than a total number of cylinders of the engine. The fuel control module further: disables fueling of the M cylinders while opening of the intake and exhaust valves of the M cylinders is deactivated; and, while fueling of the M cylinders is disabled and opening of the intake and exhaust valves of the M cylinders is deactivated, controls fuel injection of other cylinders based on a predetermined rich air/fuel ratio that is fuel rich relative to the stoichiometric air/fuel ratio.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: September 18, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: David P. Sczomak, Robert J. Gallon, Robert S. McAlpine, Arun S. Solomon
  • Patent number: 10077683
    Abstract: Provided herein is a heat engine system and a method for transforming energy, such as generating mechanical energy and/or electrical energy from thermal energy. The heat engine system may have one of several different configurations of a mass management system (MMS) fluidly coupled to a working fluid circuit. The MMS may be utilized to control the amount of working fluid added to, contained within, or removed from the working fluid circuit. The MMS may contain a mass control tank, an inventory transfer line, and system/tank transfer valves. The MMS may contain a transfer pump fluidly coupled to the inventory transfer line and configured to control the pressure in the inventory transfer line. The MMS may have two or more transfer lines, such as an inventory return line and valve, and an inventory supply line and valve.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: September 18, 2018
    Assignee: Echogen Power Systems LLC
    Inventor: Cameron Close
  • Patent number: 10072582
    Abstract: An in-line propeller gearbox of a turboprop gas turbine engine includes a lubricant reservoir disposed spaced radially offset from the engine's central axis of rotation and asymmetrically with respect to the central axis of rotation such that the central axis of rotation does not extend through the lubricant reservoir.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: September 11, 2018
    Assignee: General Electric Company
    Inventor: Mark Gregory Wotzak
  • Patent number: 10066641
    Abstract: A system is provided, including an airfoil. The airfoil includes a first suction portion of a nominal airfoil profile substantially in accordance with Cartesian coordinate values of X, Y, and Z of a suction side as set forth in TABLE I to a maximum of three decimal places, wherein the X and Y values of the suction side are coordinate values that couple together to define suction side sections of the first suction portion of the nominal airfoil profile at each Z coordinate value, the suction side sections of the first suction portion of the nominal airfoil profile are coupled together to define the first suction portion, the airfoil includes an airfoil length along a Z axis, the first suction portion comprises a first portion length along the Z axis, the first portion length is less than or equal to the airfoil length, and the Cartesian coordinate values of X, Y, and Z are non-dimensional values convertible to dimensional distances.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: September 4, 2018
    Assignee: General Electric Company
    Inventors: Prabakaran Modachur Krishnan, Dwight Eric Davidson, Nandakumar Aladahalli Rangaswamy
  • Patent number: 10060316
    Abstract: An airflow control system for a combined cycle turbomachine system in accordance with an embodiment includes: an airflow generation system for attachment to a rotatable shaft of a gas turbine system, the airflow generation system drawing in an excess flow of air through an air intake section; a mixing area for receiving an exhaust gas stream produced by the gas turbine system; an air extraction system for extracting a first portion of the excess flow of air to provide bypass air, and for diverting the bypass air into the mixing area to reduce a temperature of the exhaust gas stream; and an airflow regulation system for diverting a second portion of the excess flow of air into the compressor component and, in response to an under-frequency grid event, for increasing the second portion of the excess flow of air diverted into the compressor component.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: August 28, 2018
    Assignee: General Electric Company
    Inventors: Robert Joseph Reed, Lewis Berkley Davis, Jr., Parag Prakash Kulkarni
  • Patent number: 10060359
    Abstract: In one embodiment, a system includes at least one sensor configured to communicate a signal representative of blower vane position, wherein the blower vane is disposed in a blower of an exhaust gas recirculation system receiving exhaust from a gas turbine system and recycling the exhaust gas back to the gas turbine system. The system further includes a controller communicatively coupled to the at least one sensor, wherein the controller is configured to execute a control logic to derive a reference value for the blower vane position, and wherein the controller is configured to apply a direct limit, an model-based limit, or a combination thereof, to the reference value to derive a limit-based value, and wherein the controller is configured to position the blower vane based on the limit-based value.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: August 28, 2018
    Assignees: General Electric Company, ExxxonMobil Upstream Research Company
    Inventors: Karl Dean Minto, Todd Franklin Denman, Franklin F. Mittricker, Richard Alan Huntington
  • Patent number: 10047676
    Abstract: An electromechanical component arrangement for a gas turbine engine includes a mechanical component located at a first side of a firewall. An electronic module assembly of the electromechanical component is connected to the mechanical component and includes a housing, a mounting frame located in the housing and an electronic module secured to the mounting frame. The electronic module is operably connected to the mechanical component via a module cable. A vibration isolator is located in the housing to locate and support the mounting frame therein. The vibration isolator is configured to vibrationally isolate the electronic module from gas turbine engine vibrations. A cover plate is secured to the housing and the first side of the firewall, while the housing extends from the cover plate through a module opening in the firewall to a second side of the firewall having a lower operating temperature than the first side.
    Type: Grant
    Filed: April 25, 2016
    Date of Patent: August 14, 2018
    Assignee: UNITED TECHNOLOGIES CORPORATION
    Inventors: Joseph Stack, Jesse M. Chandler, Gabriel L. Suciu, Kurt J. Sobanski