Patents Examined by Jesse Roe
  • Patent number: 9707718
    Abstract: A method provides a device having a feeder vessel, a building vessel with a bottom and a fabrication plate that is movable in vertical translation, a transfer system suitable for depositing powder from the feeder vessel to the building vessel as a powder layer of constant thickness, and a high energy beam optical system suitable for scanning the surface of the deposited powder layer. A powder is placed in the feeder vessel. A first series of powder layers is deposited on the fabrication plate. The particles of powder are melted or sintered to form a plurality of columns of material that are separated from one another by particles of powder. A second series of layers of powder is deposited on the first series of layers of powder particles to form a single-piece element. A thermal insulation platform is formed between the fabrication plate and said single-piece element.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: July 18, 2017
    Assignee: SNECMA
    Inventors: Thomas Vilaro, Olivier Chantoiseau, Sebastien Rix
  • Patent number: 9657375
    Abstract: An aluminum alloy and recycle method are provided in which the recycled used beverage containers form an alloy composition useful with relatively minor or no compositional adjustments for body, end and tab stock, apart from magnesium levels.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 23, 2017
    Assignee: Golden Aluminum, Inc.
    Inventors: Leland Lorentzen, Mark Selepack
  • Patent number: 9650690
    Abstract: A high-strength steel sheet includes: 0.03 to 0.20% of C, 0.08 to 1.5% of Si, 0.5 to 3.0% of Mn, 0.05% or less of P, 0.0005% or more of S, 0.008 to 0.20% of acid-soluble Ti, 0.0005 to 0.01% of N, more than 0.01% of acid-soluble Al, and 0.001 to 0.04% of one or both of Ce and La in terms of mass %; and the balance including Fe and inevitable impurities. The ratio of (Ce+La)/acid-soluble Al is equal to or more than 0.1 and the ratio of (Ce+La)/S is in the range of 0.4 to 50 in a mass base, and the density of the number of inclusions, having a circle equivalent diameter of 2 ?m or less, which are present in the steel sheet is equal to or more than 15/mm2.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: May 16, 2017
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kenichi Yamamoto, Katsuhiro Sasai, Hideaki Yamamura, Hiroshi Harada, Kaoru Kawasaki
  • Patent number: 9499884
    Abstract: A titanium based carbonitride alloy containing Ti, Nb, Ta, W, C, N and Co, contains: Co 7 to 21 wt % W 14 to 20 wt % Ta 5 to 11 wt % Nb 2 to 7 wt % and, Ti 33 to 50 wt % whereby the overall N/C weight ratio is 0.6 to 0.75, the Ta/Nb weight ratio 1.8 to 2.1, the relative saturation magnetization 0.60 to 0.90 and the magnetic coercivity Hc=(18.2?0.2*Co wt %) +/? E kA/m, where E is 2.0. A method of making the alloy is also described.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: November 22, 2016
    Assignee: SECO TOOLS AB
    Inventors: Bo Jansson, Jenni Zackrisson, Tomas Persson
  • Patent number: 9334551
    Abstract: Disclosed herein are nickel beryllium alloys having improved corrosion and hardness characteristics relative to known nickel beryllium alloys. The alloys have a chemical composition with about 1.5% to 5% beryllium (Be) by weight, about 0.5% to 7% niobium (Nb) by weight; and nickel (Ni). Up to about 5 wt % chromium (Cr) may also be included. The alloys display improved hardness and corrosion resistance properties.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: May 10, 2016
    Assignee: Materion Corporation
    Inventors: Carole L. Trybus, John C. Kuli, Fritz C. Grensing
  • Patent number: 9228250
    Abstract: The invention relates to an alloy comprising (in mass %) Ni 33-35%, Cr 26-28%, Mo 6-7%, Cu 0.5-1.5%, Mn 1.0-4%, Si max. 0.1%, Al 0.01-0.3%, C max. 0.01%, N 0.1-0.25%, B 0.001-0.004%, SE>0 to 1%, and Fe remainder, including unavoidable impurities.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: January 5, 2016
    Assignee: VDM Metals GmbH
    Inventors: Helena Alves, Rainer Behrens
  • Patent number: 8864919
    Abstract: It is an objective of the invention to provide a Ni-based forged alloy having good large ingot formability and good hot formability as well as high mechanical strength at high temperature. There is provided a Ni-based forged alloy comprising: 0.001 to 0.1 mass % of C; 0.001 to 0.01 mass % of B; 16 to 22 mass % of Cr; 0.5 to 1.5 mass % of Al; 0.1 to 6.0 mass % of W; 3.5 to 5.5 mass % of Nb; 0.8 to 3.0 mass % of Ti; 16 to 20 mass % of Fe; 2.0 mass % or less of Mo; and the balance including Ni and unavoidable impurities, in which: a segregation parameter Ps defined by a formula of “Ps (mass %) =1.05×[Al concentration (mass %)]+0.6×[Ti concentration (mass %)]?0.8×[Nb concentration (mass %)]?0.3×[Mo concentration (mass %)]” satisfies a relationship of “Ps??3.0 mass %”; and a total amount of W and Mo is 1.75 atomic % or less.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: October 21, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sato, Shinya Imano, Hiroyuki Doi, Takashi Shibayama
  • Patent number: 8696833
    Abstract: An intermetallic compound having excellent mechanical properties at high temperatures is provided. An intermetallic compound of the present invention contains greater than 5 at % and not greater than 13 at % of Al, not less than 9.5 at % and less than 17.5 at % of V, not less than 0 at % and not greater than 3.5 at % of Ti, not less than 0 weight ppm and not greater than 1000 weight ppm of B, and the remaining portion consisting of Ni and inevitable impurities, and having a dual multi-phase microstructure comprising a primary L12 phase and an (L12+D022) eutectoid microstructure.
    Type: Grant
    Filed: March 24, 2006
    Date of Patent: April 15, 2014
    Assignee: Osaka Prefecture University Public Corporation
    Inventors: Takayuki Takasugi, Yasuyuki Kaneno
  • Patent number: 8540825
    Abstract: A low-temperature stainless steel carburization method comprises steps: providing a stainless steel material; placing the stainless steel material in a halogen-free reducing environment and maintaining the stainless steel at a first temperature ranging 1,050 to 1,400° C.; and placing the stainless steel material in a carbon-bearing atmosphere and maintaining the stainless steel material at a second temperature lower than 600° C. to implant carbon atoms into the stainless steel material to form a carburized layer on the surface of the stainless steel material. A halide-bearing gas or solution is not to be applied to activate the passivation layer, so the fabrication cost would be reduced and the safety of carburization process would be enhanced. Besides, the environment can be prevented from halide pollution.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: September 24, 2013
    Assignee: Taiwan Powder Technologies Co., Ltd.
    Inventors: Kuen-Shyang Hwang, Li-Hui Cheng, Yung-Chung Lu