Patents Examined by Jessee Roe
  • Patent number: 9957586
    Abstract: The invention relates to a method of using a suspension smelting furnace and to a suspension smelting furnace and to a concentrate burner (4). The concentrate burner (4) comprises a first gas supply device (12) for feeding a first gas (5) into the reaction shaft (2) and a second gas supply device (18) for feeding a second gas (16) into the reaction shaft (2). The first gas supply device (12) comprises a first annular discharge opening (14), which which is arranged concentrically with the mouth (8) of a feeder pipe (7), so that the first annular discharge opening (14) surrounds the feeder pipe (7). The second gas supply device (18) comprises a second annular discharge opening (17), which is arranged concentrically with the mouth (8) of the feeder pipe (7), so that the second annular discharge opening (17) surrounds the feeder pipe (7) opening (14).
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: May 1, 2018
    Assignee: Outotec Oyj
    Inventors: Jussi Sipilä, Markku Lahtinen, Peter Björklund, Kaarle Peltoniemi, Tapio Ahokainen, Lauri P. Pesonen, Kaj Eklund
  • Patent number: 9957583
    Abstract: A method for repairing break of a universal connecting rod of a universal coupling includes steps of: cleaning and detecting cracks, providing primary anneal, depositing alloys, providing secondary anneal, manually milling and controlling a quality; wherein depositing the alloys includes forming gradient in an order of a bonding layer, a transition layer, a working layer and a processing layer; wherein the bonding layer: S and P in the depositing area are diluted with an FGM-KM1# material, for removing or reducing the S and P, so as to avoid cold and hot cracks; the transition layer: which is formed by an FGM-KM2# material for improving impact toughness and evacuation stress, and appropriate increasing hardness; the working layer: which is formed by an FGM-KM3# material for improving heat resistance, wear resistance and load capacity; and the processing layer: an FGM-KM4# material is used to reduce surface hardness and improve processing performance.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: May 1, 2018
    Assignee: Wuhan Kaiming High Tech Co., Ltd.
    Inventors: Kaiming Zhang, Weiguo Wu, Jianhua Fan, Sigu Zhu, Guanglei Chen, Wenhe Chen, Li Lin, Tingxi Xiao, Wei Li, Fuquan Liu, Jiang Li, Fei Wang, Wenbin Luo, Xiaoping Li
  • Patent number: 9951396
    Abstract: A quench system includes an enclosure defining a quench chamber sized to receive hot castings, and bulk air fans in fluid communication with the quench chamber and configured to establish a bulk flow of cooling air that surrounds and extracts heat from the hot castings at a first cooling rate. The quench system also includes a pressurized cooling system in fluid communication with a plurality of nozzles within the quench chamber and configured to spray a plurality of a directed flows of cooling fluid onto the hot castings to extract heat at a second cooling rate. The quench system further includes a programmable controller configured to sequentially activate the bulk air fans to cool the casting at the first cooling rate for a first predetermined period of time, and then activate the pressurized cooling system to cool the casting at the second cooling rate for a second predetermined period of time.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: April 24, 2018
    Assignee: Consolidated Engineering Company, Inc.
    Inventor: Scott P. Crafton
  • Patent number: 9953752
    Abstract: A method for producing grain-oriented electrical steel sheets includes subjecting a steel slab to hot rolling to obtain a hot rolled sheet, the steel slab having a composition consisting of, by mass % or mass ppm, C: 0.08% or less, Si: 2.0% to 4.5% and Mn: 0.5% or less, S, Se, and O: less than 50 ppm each, sol.Al: less than 100 ppm, N: 80 ppm or less, and the balance being Fe and incidental impurities, and satisfying the relation of sol.Al (ppm)?N (ppm)×(26.98/14.00)?30 ppm; then subjecting the hot rolled sheet to annealing and rolling to obtain a cold rolled sheet; then subjecting the cold rolled sheet to nitriding treatment, under specific condition, before, during or after primary recrystallization annealing; then applying an annealing separator on the cold rolled sheet; and subjecting the cold rolled sheet to secondary recrystallization annealing.
    Type: Grant
    Filed: December 25, 2013
    Date of Patent: April 24, 2018
    Assignee: JFE STEEL CORPORATION
    Inventors: Yukihiro Shingaki, Hiroi Yamaguchi, Yuiko Wakisaka, Hiroshi Matsuda, Takashi Terashima
  • Patent number: 9945004
    Abstract: A material for high carburizing steel and a method for producing a gear using the material are provided. The material includes C of about 0.13 to 0.3 wt %, Si 0.7 to 1.3 wt %, Mn of about 0.3 to 1 wt %, P of about 0.02 wt % or less, S of about 0.03 wt % or less, Cr of about 2.2 to 3.0 wt %, Mo of about 0.2 to 0.7 wt %, Cu of about 0.3 wt % or less, Nb of about 0.03 to 0.06 wt %, V of about 0.1 to 0.3 wt %, Ti of about 0.001 to 0.003 wt %, a balance of Fe and other inevitable.
    Type: Grant
    Filed: November 6, 2014
    Date of Patent: April 17, 2018
    Assignees: Hyundai Motor Company, SeAH Besteel Corporation
    Inventors: Jae Hong Park, Jung Ho Shin, Woon Jae Lee
  • Patent number: 9945016
    Abstract: This heat-resistant austenitic stainless steel sheet contains, in mass %, C: 0.05 to 0.15%, Si: 1.0 to 3.5%, Mn: 0.5 to 2.0%, P: not more than 0.04%, S: not more than 0.01%, Cr: 23.0 to 26.0%, Ni: 10.0 to 15.0%, Mo: 0.50 to 1.20%, Ti: not more than 0.1%, Al: 0.01 to 0.10% and N: 0.10 to 0.30%, wherein the total amount of C and N (C+N) is from 0.25 to 0.35%, and the balance is composed of Fe and unavoidable impurities. The heat-resistant austenitic stainless steel can be used in a high-temperature environment that reaches a maximum temperature of 1,100° C.
    Type: Grant
    Filed: March 28, 2014
    Date of Patent: April 17, 2018
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Yoshiharu Inoue, Nobuhiko Hiraide, Atsuhisa Yakawa
  • Patent number: 9945019
    Abstract: Disclosed herein is a nickel-based heat-resistant superalloy produced by a casting and forging method, the nickel-based heat-resistant superalloy comprising 2.0 mass % or more but 25 mass % or less of chromium, 0.2 mass % or more but 7.0 mass % or less of aluminum, 19.5 mass % or more but 55.0 mass % or less of cobalt, [0.17×(mass % of cobalt content?23)+3] mass % or more but [0.17×(mass % of cobalt content?20)+7] mass % or less and 5.1 mass % or more of titanium, and the balance being nickel and inevitable impurities, and being subjected to solution heat treatment at 93% or more but less than 100% of a ?? solvus temperature.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: April 17, 2018
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yuefeng Gu, Toshio Osada, Yong Yuan, Tadaharu Yokokawa, Hiroshi Harada
  • Patent number: 9944799
    Abstract: For renovating an open-pored plaster layer, a paint is made available that includes water, an inorganic binder on an alkali polysilicate base, a pigment composed of particles and a stabilizer. The stabilizer is composed of small particles on a silicate base, having an average diameter below 3 ?m, wherein these particles are colloidal distributed in water because of their charge distribution. As a result, the stabilizer prevents an insoluble sedimenting of the pigment particles. Following the application of this paint, the desired and in particular the original color shade is again uniformly present across the complete surface, and the cohesive pores extending through the plaster layer are essentially still open. The sound-absorbing effect of the porous plaster layer is therefore not substantially impaired as a result of the renovation.
    Type: Grant
    Filed: March 4, 2015
    Date of Patent: April 17, 2018
    Assignee: BASWA ACOUSTIC AG
    Inventors: Eric Sulzer, Bernhard Hanisch, Edgar Fructuoso
  • Patent number: 9945015
    Abstract: A high-tensile steel plate has a chemical composition containing, by mass, specific amounts of C, Mn, Si, P, S, Al, Ni, B, N, one or more elements selected from Cr, Mo, V, Cu, Ti, and Ca as needed, Ceq?0.80, and a center-segregation zone hardness index HCS satisfying 5.5[C]4/3+15[P]+0.90[Mn]+0.12[Ni]+0.53[Mo]?2.5. The hardness of a center-segregation zone satisfies HVmax/HVave?1.35+0.006/C?t/750. A steel having the above-described chemical composition is subjected to hot rolling at a specific slab-heating temperature at a specific rolling reduction ratio, subsequently reheated, cooled at a cooling rate of 0.3° C./s or more until the temperature of a central portion in a plate-thickness direction reaches 350° C. or less, and tempered to a specific temperature range.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: April 17, 2018
    Assignee: JFE Steel Corporation
    Inventors: Masao Yuga, Shigeki Kitsuya, Kenji Hayashi, Minoru Suwa
  • Patent number: 9943904
    Abstract: A magnesium alloy material such as a magnesium alloy cast material or a magnesium alloy rolled material, excellent in mechanical characteristics and surface precision, a producing method capable of stably producing such material, a magnesium alloy formed article utilizing the rolled material, and a producing method therefor. The magnesium material includes a melting step of melting a magnesium alloy in a melting furnace to obtain a molten metal, a transfer step of transferring the molten metal from the melting furnace to a molten metal reservoir, and a casting step of supplying a movable mold with the molten metal from the molten metal reservoir, through a pouring gate, and solidifying the molten metal to continuously produce a cast material. Parts are formed by a low-oxygen material having an oxygen content of 20 mass % or less. The cast material is given a thickness of from 0.1 to 10 mm.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: April 17, 2018
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masatada Numano, Yoshihiro Nakai, Toshiya Ikeda, Taichiro Nishikawa
  • Patent number: 9945003
    Abstract: A highly impact resistant ductile iron casting is made from a specified high nickel content ductile iron composition and post-treated with a specified heating and cooling profile to achieve an elongation exceeding the ASTM A536 (“60-40-18”) standard, and meeting or exceeding Charpy V Notch impact resistance at ?20° F. of greater than 11.0 ft.lbs.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: April 17, 2018
    Assignee: STRATO, INC.
    Inventors: Ike S. Sowden, Jason Reiling
  • Patent number: 9938615
    Abstract: A method for the low-pressure carbonitriding of steel parts, in particular parts used in the manufacture of automobiles comprises a heating step that includes a simple heating phase (M) followed by an initial nitridation phase (Ni) from a temperature between 700° C. to 750° C. to a temperature between 860° and 1000° C. carried out using a reduced temperature gradient relative to the simple heating phase. The method further includes alternate cementing (C1-Cn) and nitridation (N1-Nn) steps at constant temperature, wherein the final nitridation step is accompanied with a decrease in temperature immediately before quenching (T).
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: April 10, 2018
    Assignee: ECM TECHNOLOGIES
    Inventors: Philippe Lapierre, Jerome Lardinois, Yves Giraud, Alfred Rallo
  • Patent number: 9938600
    Abstract: A hardened formed part is manufactured with the steps: producing a blank from a hardenable strip material; heating of the blank to an austenitization temperature; forming and hardening of the blank to a hardened formed part; cleaning the hardened formed part; coating the hardened formed part with a metallic coating in an dipping bath with an electrolyte solution, wherein during the coating process, at least one auxiliary element is used in the dipping bath, such, that the deposition of the coating is partially influenced. A plant is used for manufacturing a hardened formed part.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: April 10, 2018
    Assignee: Muhr und Bender KG
    Inventors: Thomas Muhr, Jorg Dieter Brecht, Christoph Schneider, Philip Beiter
  • Patent number: 9938608
    Abstract: A spinodal copper-nickel-tin-manganese alloy is disclosed that contains from 0.001 to about 2 weight percent phosphorus. When combined with small hard particles, the alloy has sufficient fluidity to infiltrate and fill at least 90% of the interstices of the hard particles, resulting in a composite article having superior strength and toughness. This composite article can be used in drilling bits and other cutting tools, either as a support body for cutting elements or as the cutting element itself.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: April 10, 2018
    Assignee: MATERION CORPORATION
    Inventor: William D. Nielsen, Jr.
  • Patent number: 9938609
    Abstract: A nickel-chromium-molybdenum-copper alloy resistant to 70% sulfuric acid at 93° C. and 50% sodium hydroxide at 121° C. for acid and alkali neutralization in the field of waste management; the alloy contains, in weight percent, 27 to 33 chromium, 4.9 to 7.8 molybdenum, 3.1 to 6.0 wt. % copper (when chromium is between 30 and 33 wt. %) or 4.7 to 6.0 wt. % copper (when chromium is between 27 and 29.9 wt. %), up to 3.0 iron, 0.3 to 1.0 manganese, 0.1 to 0.5 aluminum, 0.1 to 0.8 silicon, 0.01 to 0.11 carbon, up to 0.13 nitrogen, up to 0.05 magnesium, up to 0.05 rare earth elements, with a balance of nickel and impurities. Titanium or another MC carbide former can be added to enhance thermal stability of the alloy.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: April 10, 2018
    Assignee: Haynes International, Inc.
    Inventors: Paul Crook, Vinay P. Deodeshmukh
  • Patent number: 9932657
    Abstract: The present invention provides a Ni-based single crystal superalloy which has the following composition by weight: 0.1 wt % or more and 9.9 wt % or less of Co, 5.1 wt % or more and 10.0 wt % or less of Cr, 1.0 wt % or more and 4.0 wt % or less of Mo, 8.1 wt % or more and 11.0 wt % or less of W, 4.0 wt % or more and 9.0 wt % or less of Ta, 5.2 wt % or more and 7.0 wt % or less of Al, 0.1 wt % or more and 2.0 wt % or less of Ti, 0.05 wt % or more and 0.3 wt % or less of Hf, 1.0 wt % or less of Nb and less than 3.0 wt % of Re with the remainder including Ni and unavoidable impurities. This Ni-based single crystal superalloy has a low Re content and also has excellent high-temperature strength, mainly creep strength.
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: April 3, 2018
    Assignee: IHI CORPORATION
    Inventors: Yasuhiro Aoki, Akihiro Sato
  • Patent number: 9932655
    Abstract: A Ni-based alloy includes, as a chemical composition, C, Si, Mn, Cr, Mo, Co, Al, Ti, B, P, S, and a balance consisting of Ni and impurities. The average grain size d is 10 ?m to 300 ?m, when the average grain size d is an average grain size in unit of ?m of a ? phase included in a metallographic structure of the Ni-based alloy. Precipitates with a major axis of 100 nm or more are absent in the metallographic structure. An area fraction ? is f2 or more, when the area fraction ? and the f2 are expressed by using the average grain size d and amounts in mass % of each element in the chemical composition.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: April 3, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Tomoaki Hamaguchi, Hiroyuki Semba, Hirokazu Okada
  • Patent number: 9931179
    Abstract: A method of forming a dental tool or instrument having a memorized shape. The method comprises selecting a nitinol wire having an initial transition temperature below room temperature; grinding the nitinol wire to form the dental tool or instrument so as to have a shank, located adjacent a first end, and a working area, with at least one cutting edge, located adjacent an opposite second leading end; molding the working area into a molded shape having at least one protrusion formed therein; heating the dental tool or instrument to both: a) alter the initial transition temperature of the dental tool or instrument to a final transition temperature, and b) memorize the Molded shape including the at least one protrusion so that the dental tool or instrument will automatically return to the molded shape having the at least one protrusion when at a temperature at or above the final transition temperature.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: April 3, 2018
    Assignee: FKG DENTAIRE S.A.
    Inventor: Jean-Claude Rouiller
  • Patent number: 9932656
    Abstract: A nickel-based alloy, consisting of (in mass %) 1.5-3.0% Si, 1.5-3.0% Al, and >0.1-3.0% Cr, where Al+Si+Cr is ?4.0 and ?8.0 for the contents of Si, Al, and Cr in %; 0.005-0.20% Fe, 0.01-0.20% Y, and <0.001-0.20% of one or more the elements Hf, Zr, La, Ce, Ti, where Y+0.5*Hf+Zr+1.8*Ti+0.6*(La+Ce) is ?0.02 and ?0.30 for the contents of Y, Hf, Zr, La, Ce, and Ti in %; 0.001-0.10% C; 0.0005-0.10% N; 0.001-0.20% Mn; 0.0001-0.08% Mg; 0.0001-0.010% O; max. 0.015% S; max. 0.80% Cu; Ni remainder; and the usual production-related impurities.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: April 3, 2018
    Assignee: VDM Metals International GmbH
    Inventors: Heike Hattendorf, Frank Scheide, Larry Paul
  • Patent number: 9932495
    Abstract: Coating compositions that provide hydrophilic and self-cleaning properties upon exposure to an electromagnetic spectrum are disclosed. Coatings can include lignin-coumarate derivatives and/or lignin-azobenzene derivatives. When exposed to the electromagnetic spectrum, these compounds isomerize to cis-configuration which are hydrophilic in nature as compared to when these compounds are in their hydrophobic trans-state.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: April 3, 2018
    Assignee: Empire Technology Development LLC
    Inventor: Sivaraman Raghu