Patents Examined by Jessica D Parisi
  • Patent number: 11982677
    Abstract: The present disclosure relates to compositions of matter and assay methods used to screen for molecular dimerization events using a two-ribonucleoprotein complex signal boost assay. The compositions and methods provide a readout upon detection of dimerization of molecules and may be implemented in a high throughput manner using libraries of tens to hundreds to thousands of putative binding partners.
    Type: Grant
    Filed: September 23, 2023
    Date of Patent: May 14, 2024
    Assignee: VedaBio, Inc.
    Inventor: Daniel Durocher
  • Patent number: 11976324
    Abstract: Methods and compositions for performing highly sensitive in vitro assays to define substrate preferences and off-target sites of nucleic-acid binding, modifying, and cleaving agents.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 7, 2024
    Assignee: The General Hospital Corporation
    Inventors: J. Keith Joung, Vikram Pattanayak, Karl Petri, Kanae Esther Sasaki
  • Patent number: 11959074
    Abstract: A method for sequencing a target polynucleotide includes detecting a first series of nucleotide incorporations complementary to at least a portion of the target polynucleotide. The first series of nucleotide incorporations forms a first complementary polynucleotide. The target nucleotide is secured to a substrate disposed in a sequencing zone of an assembly. The method further includes moving the substrate to which the target nucleotide is secured to a templating zone of the assembly; removing the first complementary polynucleotide when the substrate is disposed at the templating zone of the assembly, the target polynucleotide remaining secured to the substrate; following the removing, moving the substrate to which the target polynucleotide is secured to the sequencing zone; and detecting a second series of nucleotide incorporations complementary to at least a portion of the target polynucleotide, the second series of nucleotide incorporations forming a second complementary polynucleotide.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: April 16, 2024
    Inventors: Chiu Tai Andrew Wong, Kylan Szeto, Shanti Shankar, Mark Beauchemin
  • Patent number: 11946042
    Abstract: The purpose of the present invention is to provide, for translation in a cell-free translation system, a novel translation system capable of synthesizing a peptide having therein consecutive non-proteinogenic amino acids. The present invention provides a tRNA containing the base sequence represented by SEQ ID NO: 1 and encoding a non-proteinogenic amino acid.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: April 2, 2024
    Assignee: The University of Tokyo
    Inventors: Hiroaki Suga, Takayuki Katoh
  • Patent number: 11926822
    Abstract: This disclosure relates to compositions and methods for three-dimensional spatial profiling of analytes in a biological sample. The methods include use of a hydrogel comprising one or more polymers that include a phenol moiety, an azide moiety, or an alkyne moiety.
    Type: Grant
    Filed: September 22, 2021
    Date of Patent: March 12, 2024
    Assignee: 10x Genomics, Inc.
    Inventors: Shalini Gohil, Eswar Prasad Ramachandran Iyer
  • Patent number: 11898203
    Abstract: Provided herein are methods and compositions for performing highly sensitive in vitro assays to define substrate preferences and off-target sites of nucleic-acid binding, modifying, and cleaving agents.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: February 13, 2024
    Assignee: The General Hospital Corporation
    Inventors: J. Keith Joung, Vikram Pattanayak, Karl Petri
  • Patent number: 11891600
    Abstract: Presented herein are techniques for indexing of nucleic acid, e.g., for use in conjunction with sequencing. The techniques include generating indexed nucleic acid fragments from an individual sample, whereby the index sequence incorporated into each index site of the nucleic acid fragment is selected from a plurality of distinguishable of index sequences and such that the population of generated nucleic acid fragments represents each index sequence from the plurality. In this manner, the generated indexed nucleic acid fragments from a single sample are indexed with a diverse mix of index sequences that reduce misassignment due to index read errors associated with low sequence diversity.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: February 6, 2024
    Assignee: ILLUMINA, INC.
    Inventors: John S. Vieceli, Ryan Matthew Kelley
  • Patent number: 11885814
    Abstract: A method for detecting the binding of a chromatin-associated factor of interest to a sequence of chromatin DNA in a cell, including: contacting a permeabilized cell or nucleus with a specific binding agent that specifically recognizes the chromatin-associated factor of interest, wherein the specific binding agent is linked to a nuclease that is inactive or an activatable transposome; activating the nuclease or transposase, thereby excising the sequence of chromatin DNA bound to the chromatin-associated factor of interest; isolating the excised DNA; and determining the sequence of the excised DNA, thereby detecting binding of a chromatin-associated factor of interest to a sequence of chromatin DNA in the cell.
    Type: Grant
    Filed: January 26, 2022
    Date of Patent: January 30, 2024
    Assignee: Fred Hutchinson Cancer Center
    Inventors: Steven Henikoff, Hatice Seda Kaya Okur, Terri Dawn Bryson, Peter James Skene
  • Patent number: 11845987
    Abstract: Provided herein are methods and compositions for performing highly sensitive in vitro assays to define substrate preferences and off-target sites of nucleic-acid binding, modifying, and cleaving agents.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: December 19, 2023
    Assignee: The General Hospital Corporation
    Inventors: J. Keith Joung, Vikram Pattanayak, Karl Petri
  • Patent number: 11692191
    Abstract: The present invention relates to a technique for genomic library screening and provides a method for separating, capturing, analyzing, and retrieving cells and cell products by using a microstructure that can be preferentially applied to the field of antibody engineering for the development of new therapeutic antibodies and can be extensively applied to multiple genetic/phenotypic analysis of various biochemical molecules, for example, in the field of protein engineering and metabolic engineering.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: July 4, 2023
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Sung Hoon Kwon, Jun Hoi Kim, Seo Hee Chang, Ok Ju Kim