Patents Examined by Jewel V Dowtin
  • Patent number: 10533881
    Abstract: A sensor assembly that includes a mounting frame; and a support platform coupled with the mounting frame. The support platform has a top platform surface with a circuit board disposed thereon. The circuit board is operably configured with a secondary microcontroller and a Hall effect sensor. There is an inner sensor housing configured to extend out and around the circuit board and the support platform. There is a first magnet coupled to an underside of the inner sensor housing. There is a rotating member configured with a plurality of blades and a rotating member mounting ring, the rotating member is proximately disposed on top of the inner sensor housing.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: January 14, 2020
    Assignee: FORUM US, INC.
    Inventors: Randy Vanberg, Hamid Reza Zareie Rajani, Seyed Reza Larimi, Morteza Abbasi
  • Patent number: 10533884
    Abstract: A measuring transducer for registering and/or monitoring at least one process variable of a flowable medium guided in a pipeline, which at least includes: a housing module, which is mechanically coupled with the pipeline via an inlet end and an outlet end, and a sensor module having at least one measuring tube held oscillatably at least partially in the housing module and caused, at least at times, to oscillate. The at least one component of the housing module and/or of the sensor module is manufactured by means of a generative method and method for manufacturing at least one component of a measuring transducer, which method includes manufacturing the at least one component by means of a primary forming process, especially by means of a layered applying and/or melting-on of a powder, especially a metal powder, based on a digital data set, which gives at least the shape and/or the material and/or the structure of the at least one component.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: January 14, 2020
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Martin Josef Anklin, Gerhard Eckert, Christian Schutze, Ennio Bitto, Christof Huber, Claude Hollinger, Alfred Rieder, Michael Kirst
  • Patent number: 10527640
    Abstract: A method of detecting blockage of a pitot tube includes measuring a pitot tube temperature via one or more temperature sensors located inside a pitot tube, measuring an outside ambient air temperature, comparing the measured pitot tube temperature to a minimum pitot tube temperature threshold for the measured outside ambient air temperature, and determining the pitot tube has a blockage condition when the measured pitot tube temperature is below the minimum pitot tube temperature threshold.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: January 7, 2020
    Assignee: ROSEMOUNT AEROSPACE INC.
    Inventors: Divakara Rao Vadada, Divya Rajan Pillai
  • Patent number: 10517485
    Abstract: An acoustic wave receiving apparatus is used, which includes: a holding member; a reception transducer array; a liquid vessel to which the reception transducer array is fixed and configured to store an acoustic matching liquid; a liquid supplying unit; a controlling unit configured to control a supplying rate of the acoustic matching liquid; and a scanning unit, wherein the controlling unit is configured to reduce the supply of the acoustic matching liquid into the liquid vessel when the reception transducer array detects an acoustic wave.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: December 31, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Takeshi Yamamoto, Mitsuo Nishimura
  • Patent number: 10520342
    Abstract: An ultrasonic flowmeter is provided with at least one measuring tube having at least one recess. Disposed in the recess are at least a first ultrasonic transducer and a second ultrasonic transducer, wherein the first ultrasonic transducer is designed as an ultrasonic transmitter and/or as an ultrasonic receiver and the second ultrasonic transducer is designed as an ultrasonic transmitter and/or as an ultrasonic receiver. Further disposed in the recess is at least one reflection surface. The first and second ultrasonic transducers are arranged on the measuring tube such that the measuring path between the first and the second ultrasonic transducers comprises at least one reflection at the reflecting surface. The provision of the reflection surface in the recess provides an ultrasonic flowmeter with which the flow profile can be easily measured, especially in the edge region.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: December 31, 2019
    Assignee: KROHNE AG
    Inventors: Arie Huijzer, Jeroen Martin van Klooster
  • Patent number: 10514284
    Abstract: A flow sensor sub-assembly for sensing flow of a fluidic medicament is disclosed. The flow sensor sub-assembly includes a first spring contact and a second spring contact. The spring contacts are secured to a base that has a circuit for conducting an electrical signal to and from the spring contacts to a microprocessor. The first spring contact is in electrical communication with a first piezo element and the second spring contact is in electrical communication with a second piezo element. The first spring contact has a first contact force against the first piezo element and the second spring contact has a second contact force against the second piezo element, and the first and second contact forces are equivalent. A circuit board for interfacing to a flow sensor having a plurality of piezo elements for transmitting a flow signal indicative of flow of fluidic medicament is also disclosed.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 24, 2019
    Assignee: CRISI Medical Systems, Inc.
    Inventors: Shawn Wayne DeKalb, Mark Raptis
  • Patent number: 10508940
    Abstract: A measuring device with a fluid module is proposed, which comprises a measuring tube through which a fluid can flow and at least one acoustic measuring unit. The at least one acoustic measuring unit comprises at least one transmitter, at least one receiver as well as at least one waveguide. The measuring tube has at least one measuring section with a substantially angular internal cross section and at least one connecting section with a non-angular internal cross section, wherein the measuring tube has at least one transition section, which extends between the measuring section and the connecting section. The transition section has an internal cross section identical to the internal cross section of the measuring section at an end allocated to the measuring section and further an internal cross section identical to the internal cross section of the connecting section at an end allocated to the connecting section. Furthermore, a fluidic system is described.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: December 17, 2019
    Assignees: BUERKERT WERKE GMBH & CO. KG, BURKERT S.A.S.
    Inventors: Hendrik Faustmann, Yannick Fuchs, Yves Hoog, Franziska Maier, Michael Tischmacher
  • Patent number: 10502598
    Abstract: A sensor assembly having a mounting frame with a central segment, and support platform coupled with the central segment. The support platform also has a platform hollow; and a top platform surface. There is a shaft disposed in the platform hollow. There is a circuit board positioned onto the support platform. The sensor assembly has a rotating member having a plurality of blades, the rotating member being disposed around the shaft.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: December 10, 2019
    Assignee: FORUM US, INC.
    Inventors: Randy Vanberg, Hamid Reza Zareie Rajani, Seyed Reza Larimi, Morteza Abbasi
  • Patent number: 10495499
    Abstract: Techniques are described herein for displacing liquid away from a signal path of sonic signals in a signal anemometer. A sonic anemometer may include a membrane positioned between a sonic transducer and the open environment. The membrane may be formed of a hydrophobic material that repels the liquid. The membrane may also include a plurality of pores that impede the flow of liquid through the membrane but enables sonic signals to pass through the membrane. The sonic anemometer may also include a reflector that displaces liquid away from the signal path of the sonic anemometer. The reflector may include one or more pores that wick liquid away from the signal path.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: December 3, 2019
    Assignee: METER Group, Inc. USA
    Inventors: Gaylon S. Campbell, Nathan Taysom, Colin S. Campbell, Douglas R. Cobos
  • Patent number: 10495496
    Abstract: Systems and methods for measuring a flow rate through a nozzle include generating a first polynomial relationship between pressure and output voltage for a first pressure transducer located at one end of the nozzle and generating a second polynomial relationship between pressure and output voltage for a second pressure transducer located at another end of the nozzle. When a first voltage signal is received from the first pressure transducer and a second voltage signal from the second pressure transducer, the associated first and second pressures are generated based on the first and second polynomial relationships. A flow rate through the nozzle is then constructed based on the difference between the first pressure and the second pressure.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: December 3, 2019
    Assignee: Hydro Flow Products, Inc.
    Inventor: Marcial S. Villaverde
  • Patent number: 10495503
    Abstract: Device for simultaneously determining a mass transport of a fluid and a mass transport of a substance dissolved in the fluid, comprising at least two cartridges filled with a porous matrix, and assembly means, configured to keep the cartridges together, characterized in that the top side and the bottom side of each cartridge are non-permeable and the side wall is permeable, and in that the assembly means are configured to keep the cartridges together according to a stack, in which the cartridges may be flowed through in parallel without cross-contamination.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: December 3, 2019
    Assignees: VITO NV (VLAAMSE INSTELLING VOOR TECHNOLOGISCH ONDERZOEK NV), UNIVERSITEIT ANTWERPEN
    Inventors: Goedele Verreydt, Simon De Meulenaer, Filip Meesters
  • Patent number: 10495495
    Abstract: A liquid level detection device for a liquid supplying facility includes: a lower pipe which is in communication with a liquid-phase section of an interior space of a tank, the liquid-phase section being occupied by a liquid; an upper pipe which is in communication with a gas-phase section of the interior space of the tank, the gas-phase section being disposed above the liquid-phase section and occupied by a high-pressure gas; a differential pressure gauge for detecting a differential pressure between the lower pipe and the upper pipe; and a liquid level calculation part for calculating a liquid level of the tank on the basis of a differential pressure detection result of the differential pressure gauge. An inside of the upper pipe is filled with a filling liquid at least in a partial range.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: December 3, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Taiki Asahara, Hideyuki Sakata, Takafumi Ogino
  • Patent number: 10495497
    Abstract: A flow sensor sub-assembly includes a flow tube having a lumen, an outside diameter, a first end, and a second end. An inlet fitting includes a conical orifice sized for insertion in either end of the flow tube, such that an internal passage of the inlet fitting is coaxial and concentric with the lumen and the end of the flow tube abuts a shoulder. An outlet fitting includes a conical orifice sized for insertion in either end of the flow tube, such that an internal passage of the inlet fitting is coaxial and concentric with the lumen and the end of the flow tube abuts a shoulder. A first piezo element integrated with the inlet fitting is arranged at an upstream position of the flow tube assembly and a second piezo element integrated with the outlet fitting is arranged at a downstream position of the flow tube assembly.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: December 3, 2019
    Assignee: CRISI Medical Systems, Inc.
    Inventor: Shawn Wayne DeKalb
  • Patent number: 10488237
    Abstract: The invention relates to a measurement apparatus for measuring a flow rate of a fluid that flows with a main direction of flow in a circular line comprising an inlet section for conducting the fluid from the circular line into the measurement apparatus; an outlet section for conducting the fluid from the measurement apparatus into the circular line; a measurement section for connecting the inlet section to the outlet section; at least one ultrasound device for transmitting and/or receiving ultrasound waves, wherein the ultrasound device is arranged at a wall of the measurement section; and an evaluation unit for carrying out a time of flight difference measurement and for determining the flow rate, wherein the inlet section has a first superelliptic transitional shape and the outlet section has a second superelliptic transitional shape and the measurement section has a rectangular form, in particular having rounded corners.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: November 26, 2019
    Assignee: SICK ENGINEERING GMBH
    Inventors: Eric Starke, Christian Schulz, Mario Künzelmann
  • Patent number: 10488239
    Abstract: A sensor assembly (10) for a flowmeter is provided. A flow tube (20) having a first and second loop (24, 26) are connected by a crossover section (22). The flow tube (20) comprises a thermal expansion bend (300, 302). First and second anchor blocks (30a, 30b) are each attachable to the flow tube (20) proximate the crossover section (22). A tube support (106) is attachable to one of the first and second anchor blocks (30a, 30b). First and second manifolds (90, 92) are attachable to an inlet (50) and outlet (52). A support block (100) is attachable to the first and second anchor blocks (30a, 30b), first and second manifolds (90, 92), flow tube (20), first and second anchor blocks (30a, 30b), and first and second manifolds (90, 92), and allow a predetermined degree of movement due to heating and cooling cycles when not attached to the support block (100).
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: November 26, 2019
    Assignee: Micro Motion, Inc.
    Inventors: Jeffrey D. Nielson, Gregory Treat Lanham, Christopher A. Werbach, Nikhil Bhargava, Anand Vidhate, David Fleming, Lyle Dee Ashby
  • Patent number: 10480976
    Abstract: The flowmeter having at least one measuring tube and having at least one inlet element, wherein the inlet element is connected to the at least one measuring tube and is arranged before the at least one measuring tube in respect to flow direction. The flowmeter that is also suitable for the verification of erosive media is achieved in that at least one inflow element is provided, wherein the inflow element is arranged at least partly within the inlet element and wherein the inflow element is detachably connectable to the inlet element.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: November 19, 2019
    Assignee: KROHNE AG
    Inventors: Christopher Rolph, Tao Wang
  • Patent number: 10480972
    Abstract: A control method for an apparatus for ultrasonically measuring the flow rate of a fluid in a measuring channel, including a measuring channel whose one end is equipped with a first transducer and the other end is equipped with a second transducer, each transducer emitting ultrasonic waves to the other transducer, and receiving waves generated by the other transducer, where, in a first step, the first transducer emits waves to the second transducer, and in a second step, which can be simultaneous with the first one, the second transducer emits waves prior to the reception of the waves emitted by the first transducer.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: November 19, 2019
    Assignees: EFS SA, ECOLE CENTRALE DE LYON, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE CLAUDE BERNARD LYON 1, INSTITUT NATIONAL des SCIENCES APPLIQUEES DE LYON
    Inventors: Julian Robin, Pascal Gucher, Alexandre Huchon, Sébastien Ollivier, Philippe Blanc-Benon
  • Patent number: 10473501
    Abstract: A multiphase flowmeter for detection of fluid flow by monitoring of vortex frequency or perturbation time of flight. The flowmeter includes a bluff body to facilitate formation of vortices during a consistent phase of a flowing fluid. Thus, monitoring frequency of the vortices may be employed to ascertain flowrate. Further, the bluff body may also facilitate formation of perturbations during transitioning phase of the fluid and include perturbation sensors at multiple known locations along the flow-path. Thus, analysis of perturbation detection times at the different locations may be used to ascertain flowrate even in the absence of vortices.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: November 12, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Andrew Parry, Yann Dufour
  • Patent number: 10473496
    Abstract: The disclosed apparatus, systems and methods relate to a flow meter for flowable material configured to be used in non-vertical orientations.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: November 12, 2019
    Assignee: M&S Flomatics Incorporated
    Inventors: Manjit Misra, Yuh-Yuan Shyy
  • Patent number: 10473499
    Abstract: A Doppler array flowmeter system that includes a phased array antenna coupled to a conduit. The phased array antenna includes a plurality of transducers that produce an acoustic beam by emitting a respective first acoustic signal. The transducers receive respective second signals, wherein the second signals are frequency shifted reflections of the first acoustic signals off of particulate in a fluid. A controller couples to the plurality of transducers and compares the first acoustic signals to the second signals to determine a volumetric flowrate of the fluid through a conduit.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: November 12, 2019
    Assignee: Cameron International Corporation
    Inventor: Emanuel John Gottlieb