Patents Examined by Jewel V. Thompson
  • Patent number: 8857267
    Abstract: The multiphase flow detector detects the different fractions of different phases of fluids, i.e., oil, water, and/or gas, flowing through a pipeline or the like. The detector includes a plurality of capacitive and resistive probes extending radially into an oil delivery pipeline. The probes preferably have various different lengths from one another to detect differences in fluid phases at differing distances from the pipe wall as the fluid flows randomly therethrough. The capacitive and resistive probes are preferably evenly spaced from one another in an alternating circumferential array. Two rings or stations of such probes are preferably installed in the pipe to measure the velocity of flow in the pipe, as well as the fluid fractions flowing therethrough. Appropriate algorithms enable a central controller to determine the fraction differences between oil and water and between oil and gas, and therefore to determine the fraction difference between water and gas.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: October 14, 2014
    Assignees: King Fahd University of Pretroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Wael H. Ahmed, Abdel Salam Al Sarkhi, Meamer El Nakla
  • Patent number: 8844348
    Abstract: Provided is a highly accurate, highly reliable gas flow rate measurement device that provides an enlarged temperature range over which the resolution at a high temperature and at a low temperature can be increased to achieve high accuracy no matter whether the characteristics of a gas temperature detection element are nonlinear. The gas flow rate measurement device includes a plurality of resistors that are disposed in a gas flow path, a gas flow rate detection circuit that outputs a gas flow rate detection signal in accordance with the flow rate of a gas flowing in the gas flow path by detecting a current flowing in the resistors or by detecting a voltage generated in accordance with the current, and a gas temperature detection element 1 that detects the temperature of the gas in the gas flow path.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: September 30, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kazunori Suzuki, Ryo Sato, Keiji Hanzawa
  • Patent number: 8844372
    Abstract: A vortex flow meter that senses the alternating pressure variations generated by a fixed vortex shedding generator. The alternating pressure variations of the vortices within the rows on each side of the vortex shedding generator act upon flexible elements producing forces on long columns that are transmitted to remotely located piezoelectric force sensors. The alternating forces upon the two columns are used to determine the passage of a vortex and thereby the flow. Improved output signal by minimizing loss of parasitic energy. 97% of the available signal is applied to the piezoelectric force sensors as compared to conventional 60%. Process influences such as vibration in all planes and pumping pulsations are equal and opposing and are rejected by the sensor. A capability of operating at extreme process temperatures is assured for the high temperature of the process is dissipated to the environment along the long columns.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 30, 2014
    Assignee: AVGI Engineering, Inc.
    Inventor: George E. Sgourakes
  • Patent number: 8826733
    Abstract: A prosthetic component suitable for long-term implantation is provided. The prosthetic component includes electronic circuitry and sensors to measure a parameter of the muscular-skeletal system. The prosthetic component comprises a first structure having at least one support surface, a second structure having at least one feature configured to couple to bone. The electronic circuitry and sensors are hermetically sealed within the prosthetic component. Sensors can be used to monitor synovial fluid in proximity to the joint to determine joint health. The prosthetic component can include a temperature sensor or a pH sensor. The temperature or pH of the synovial fluid can be correlated to a variety of joint conditions. Measurements over time can be analyzed for trends. The temperature or pH can be calibrated for the patient. For example, calibration can be for temperature or pH of a patient healthy joint. The measurements are compared against this patient reference.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: September 9, 2014
    Assignee: Orthosensor Inc
    Inventors: Marc Stein, Andrew Chase, John Keggi, Noah Bonnheim, Natalie Burkhard, Philip Henson
  • Patent number: 8826731
    Abstract: A flow sensor includes a main flow body, a laminar flow element, a first main flow body sensor tap, a second main flow body sensor tap, and a bypass flow body. The bypass flow body is coupled to the main flow body and has a first bypass flow port, a second bypass flow port, and a bypass flow channel between the first and second bypass flow ports. The flow restrictor is disposed within the bypass flow channel.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventors: Jamie Speldrich, Andrew Joseph Milley, Richard Charles Sorenson
  • Patent number: 8820175
    Abstract: The sensor for two-phase flow measurements is installed between two sections of pipe, providing an accurate measurement of radial temperature gradient in a two-phase flow. The sensor includes a heated tube having axially opposed first and second open ends. An annular sensor mount is secured about the first end thereof. First and second annular flanges are mounted to the heated tube for fluid-tight connection with the pair of pipe sections such that a two-phase fluid flowing through the pair of pipe sections continuously flows through the heated tube and a circular opening defined by the annular sensor mount. A central temperature sensor is suspended centrally within the circular opening for measuring a central temperature of the two-phase fluid. At least one peripheral temperature sensor is mounted on the annular sensor mount adjacent an inner annular wall thereof for measuring the peripheral temperature of the two-phase fluid.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: September 2, 2014
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Wael H. Ahmed, Meamer El Nakla, Abdel Salam Al Sarkhi, Hassan Mohamed Badr
  • Patent number: 8820178
    Abstract: An aspect provides a method of metering flow through a fluid conduit having an obstruction therein, including: placing an obstruction body within the conduit; generating at least two differential pressure measurement signals using at least three different pressure ports, said at least three different pressure ports comprising: an upstream pressure port; a downstream pressure port; and an auxiliary pressure port; wherein at least one of the upstream pressure port, the downstream pressure port, and the auxiliary pressure port is positioned at an angle between 0 and 90 degrees with respect to a conduit wall; establishing a baseline relationship between the at least two differential pressure measurement signals; and determining if the baseline relationship between the at least two differential pressure measurement signals differs by a predetermined amount. Other aspects are described and claimed.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: September 2, 2014
    Assignee: McCrometer, Inc.
    Inventors: Jared Steven Ayers, Gerald E. Davis, Clinton Paul Hobbs, Eric Dahl Mikkelsen
  • Patent number: 8820177
    Abstract: A flow measurement unit for measuring a rate of airflow for a ventilation system. The flow measurement unit includes a flow measurement device installed in a housing. A first and a second pressure gauge are provided anteriorly and posteriorly, respectively, to the flow measurement device. The first and the second pressure gauge are configured to provide a first pressure reading, corresponding to the first pressure, and a second pressure reading, corresponding to the second pressure of airflow. Further, the flow measurement unit includes a fan to adjust airflow, such that the second pressure approaches the first pressure of airflow.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: September 2, 2014
    Assignee: Caterpillar Inc.
    Inventors: Gerald R. Morris, Daniel A. Spurgeon
  • Patent number: 8813575
    Abstract: A flow sensor includes a conduit and an ultrasonic transceiver. The conduit has an inner surface and an outer surface. The inner surface defines a flow passage through which a fluid may flow in a flow direction. The ultrasonic transceiver is coupled to, and surrounds a portion of, the outer surface of the conduit. The ultrasonic transceiver is configured to transmit ultrasonic waves into the fluid that propagate in a direction that is parallel to the flow direction, receive ultrasonic waves, and supply sensor signals representative of the received ultrasonic waves.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: August 26, 2014
    Assignee: Honeywell Internation Inc.
    Inventors: Andy Peczalski, Brian Krafthefer
  • Patent number: 8813556
    Abstract: An intake temperature sensor capable of precisely detecting the temperature of intake at high speed even in a low air mass flow zone is provided. In an intake temperature sensor having a temperature detecting element 6 inserted in an opening provided in an intake pipe 3 to be disposed in the intake pipe, a temperature detecting element is mechanically joined with a heat sink 4 directly exposed to the flow of the intake flowing in the intake pipe, and the temperature of the intake is output based on an output obtained from the temperature detecting element. Thus, the thermal resistance of the temperature detecting element with respect to the intake flow can be reduced; therefore, the intake temperature sensor capable of precisely detecting the temperature of the intake at high speed even in the low air mass flow zone can be provided.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: August 26, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Masahiro Matsumoto, Hiroshi Nakano, Keiji Hanzawa, Satoshi Asano
  • Patent number: 8813576
    Abstract: A new type of coriolis mass flow meter is disclosed. In one embodiment, the coriolis mass flow meter comprises two or more flow splitters, each flow splitter being connected to two or more flow tubes; and one or more supporting pipes connecting the flow splitters. The one or more of the flow splitters have a smooth round corner with a 65° turning angle. The distance between the centers of the two or more splitter tubes is about 1.1 to 1.2 times dT, where dT is the inner diameter of each splitter tube. The splitting turning radius RT is about 1 to 2.5 times DN; where DN is inner diameter of the flange portion of the flow splitter. The inner diameter of each splitter tube is about 0.8 to 0.85 times DN/?2.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 26, 2014
    Assignee: Golden Promise Equipment Inc.
    Inventor: Guannan Li
  • Patent number: 8806958
    Abstract: A flow sensor includes a plurality of ultrasonic transceivers and signal processing circuitry. The transceivers are coupled to a portion of the outer surface of a duct, and each is configured to transmit ultrasonic waves into a fluid, receive ultrasonic waves, and supply sensor signals representative of the received ultrasonic waves. The signal processing circuitry is configured to supply separate excitation signals to each of the ultrasonic transceivers, receive the sensor signals supplied by each of the ultrasonic transceivers, and generate, in response to the sensor signals, a flow signal representative of fluid flow in the flow passage. Each of the excitation signals has a different phase, such that the ultrasonic waves transmitted by each of the ultrasonic transceivers at least selectively combine to propagate in an adjustable direction relative to the flow direction.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: August 19, 2014
    Assignee: Honeywell International Inc.
    Inventors: Andy Peczalski, Brian Krafthefer
  • Patent number: 8806959
    Abstract: A Coriolis mass flowmeter with at least one measurement tube (2) for forming a flow channel, at least one vibration generator and at least one vibration pick-up, the measurement tube (2) having one inlet end (4), two vibration sections (3a, 3b) and one outlet end (5) and being bent at least in sections such that two U-shaped or V-shaped vibration sections (3a, 3b) which run in essentially parallel planes are formed, and the vibration sections (3a, 3b) can be excited to vibrations by the vibration generator. The flow channel, except for the inlet end (4), the vibration sections (3a, 3b) and the outlet end (5), runs within a solid base (6).
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: August 19, 2014
    Assignee: Krohne AG
    Inventors: Yousif Hussain, Tao Wang
  • Patent number: 8806956
    Abstract: A magnetic flowmeter sensor includes two sensor faces, a conduit, a liner lining the conduit, and mechanical fasteners. The sensor faces are on each end of the sensor for connecting the sensor to the process fluid flow. The conduit connects the two sensor faces for conducting the process fluid flow through the sensor. The liner extends across at least a portion of each sensor face at each end of the flowmeter sensor to form a planar sealing surface on each end of the sensor. The liner includes holes through which the mechanical fasteners pass to mechanically attach the liner to the flowmeter sensor to prevent shifting of the liner. The mechanical fasteners do not extend beyond the planar sealing surfaces.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Rosemount Inc.
    Inventors: Michael Mikolichek, Steven Bruce Rogers
  • Patent number: 8806955
    Abstract: A device and method for conditioning media flowing within a conduit enabling sensors placed within short straight run distances to measure media flow with improved accuracy employing a thermal flow instrument. A flow conditioner downstream of a media flow measuring transducer has walls that diverge in the flow direction to optimize readings of the media flow from the transducer.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 19, 2014
    Assignee: Fluid Components International, LLC
    Inventors: Eric Wible, Michael R. Noel, Brian McDole
  • Patent number: 8806957
    Abstract: The invention relates to an ultrasonic flow meter housing and to an ultrasonic flow meter comprising a housing. The housing is a monolithic polymer structure being cast in one piece. The monolithic structure includes a straight flow tube and a cavity separated from the flow tube, where a shared wall part forms part of the wall of the flow tube and of an inside surface of the cavity. The cavity is arranged for housing at least one ultrasonic transducer at the shared wall part, and a measurement circuit operationally connected to the at least one ultrasonic transducer. In an embodiment, the cavity only has a single opening which can be sealed off by a cover.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: August 19, 2014
    Assignee: Kamstrup A/S
    Inventors: Peter Schmidt Laursen, Søren Tønnes Nielsen
  • Patent number: 8811569
    Abstract: A method and an apparatus for measuring dry mass flow rate for a biological material. The method steps include conveying the biological material through a measuring station, scanning the biological material with electromagnetic radiation of at least two different energy levels, determining the amount of radiation transmitted through the biological material at said two energy levels, and summing, for each of sad two energy levels, the radiation transmission values over a time frame to summed radiation transmission values. Further, a wet dry mass flow rate is estimated based on the summed radiation transmission values for said two energy level. The moisture content of the biological material is estimated based on the amounts of radiation transmitted through the biological material. The estimated wet dry mass flow rate is scaled in accordance with the estimated moisture content of the biological material, thereby providing an estimate of the dry mass flow rate.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Mantex AB
    Inventors: Ragner Kullenberg, Eric Landstrom, Fredrik Danielsson, Christian Bergstrand
  • Patent number: 8800383
    Abstract: Provided are devices and methods for monitoring flow rate in aerosol particle counters. The particle sensor has a particle counter, a flow measurement orifice comprising a differential pressure sensor for measuring differential pressure (DP) across the flow measurement orifice during particle sensor operation and a critical flow orifice. A vacuum source pulls ambient gas through each of the particle counter, flow measurement orifice and critical flow orifice. An atmospheric pressure sensor measures atmospheric pressure (AP) and a bench pressure sensor measures pressure in the particle sensor (BP). The output from the sensors is used to identify a flow condition, such as by a monitor operably connected to each of the differential pressure sensor, atmospheric pressure sensor and bench pressure sensor. In this manner, deviation in flow rate from a target flow rate is readily monitored without the need for expensive sensors or other flow-controlling components.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: August 12, 2014
    Assignee: Particle Measuring Systems, Inc.
    Inventor: Thomas Bates
  • Patent number: 8794080
    Abstract: An ultrasonic flow sensor for detecting a flow of a fluid medium in a flow tube includes at least one first ultrasonic transducer, at least one second ultrasonic transducer, and at least one waveguide configured to conduct ultrasonic waves between the at least one first ultrasonic transducer and the at least one second ultrasonic transducer by reflection on walls of the waveguide, and to enable the fluid medium to flow through. The ultrasonic waves are able to propagate between the first ultrasonic transducer and the second ultrasonic transducer on at least two ultrasonic paths. Sound energies of the ultrasonic waves transmitted on the at least two different ultrasonic paths differ from one another by no more than a factor of 100.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: August 5, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Roland Mueller, Gerhard Hueftle, Michael Horstbrink, Tobias Lang, Sami Radwan, Bernd Kuenzl, Roland Wanja
  • Patent number: 8789428
    Abstract: A measuring transducer comprises at least one measuring tube for carrying a flowing medium as well as a transducer housing mechanically coupled with the at least one measuring tube. The transducer housing includes: an inner shell forming a cavity accommodating the at least one measuring tube; and an outer cladding formed at least partially by means of yarn, namely cladding placed outside of the cavity and surrounding the inner shell.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: July 29, 2014
    Assignee: Endress + Hauser Flowtec AG
    Inventor: Michael Schuker