Patents Examined by Joannie A. García
  • Patent number: 9142472
    Abstract: Integrated circuits and methods of fabricating integrated circuits are disclosed herein. One embodiment of an integrated circuit includes a die having a side, wherein a conductive stud extends substantially normal relative to the side. A dielectric layer having a first side and a second side is located proximate the side of the die so that the first side of the dielectric layer is adjacent the side of the die. The conductive stud extends into the first side of the dielectric layer. A first via extends between the conductive stud and the second side of the dielectric layer. A conductive layer having a first side and a second side is located adjacent the second side of the dielectric layer, wherein the first side of the conductive layer is located adjacent the second side of the dielectric layer. At least a portion of the conductive layer is electrically connected to the first via.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 22, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bernardo Gallegos, Abram Castro
  • Patent number: 9136192
    Abstract: A warp correction apparatus includes an injection mechanism including a nozzle that performs injection treatment, an adsorption table that holds the substrate by adsorption at a principal surface side or a film surface side, a moving mechanism that moves the adsorption table so that the substrate relatively moves with respect to an injection area of an injection particle by the nozzle, an injection treatment chamber that houses the substrate held on the adsorption table and in the interior of which injection treatment is performed, a measurement mechanism that measures a warp of the substrate, and a control device that, based on a difference between a target warp amount and a warp amount measured by the measurement mechanism, performs at least either one of a setting processing of an injection treatment condition of the injection mechanism and an accept/reject determination of the substrate for which injection treatment has been performed.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: September 15, 2015
    Assignee: SINTOKOGIO, LTD.
    Inventors: Kouichi Inoue, Kazuyoshi Maeda, Norihito Shibuya
  • Patent number: 9130031
    Abstract: A wafer processing method including a modified layer forming step of applying a laser beam having a transmission wavelength to a substrate from the back side of the substrate along division lines. The modified layer forming step includes the steps of making the polarization plane of linearly polarized light of the laser beam parallel to the direction perpendicular to each division line, shifting the beam center of the laser beam from the optical axis of a focusing lens of a focusing unit for focusing the laser beam, in the direction perpendicular to each division line, and shifting the focal point of the laser beam by the focusing lens in the same direction as the direction where the beam center of the laser beam has been shifted.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: September 8, 2015
    Assignee: Disco Corporation
    Inventor: Tomohiro Endo
  • Patent number: 9130033
    Abstract: The invention provides a semiconductor device, including: a semiconductor device includes: a substrate having a first conductivity type, including: a body region having the first conductivity type; a source region formed in the body region; a drift region having a second conductivity type adjacent to the body region, wherein the first conductivity type is opposite to the second conductivity type; and a drain region formed in the drift region; a trench formed in the substrate between the body and drift regions; a gate dielectric layer disposed adjacent to the trench; a liner lining the trench and adjoining with the gate dielectric layer; and a gate electrode formed over the gate dielectric layer and extending into the trench.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: September 8, 2015
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Manoj Kumar, Priyono Tri Sulistyanto, Chia-Hao Lee, Rudy Octavius Sihombing, Shang-Hui Tu
  • Patent number: 9123553
    Abstract: A method and system and for fabricating 3D (three-dimensional) SIC (stacked integrated chip) semiconductor devices. The system includes a vacuum chamber, a vacuum-environment treatment chamber, and a bonding chamber, though in some embodiments the same physical enclosure may serve more than one of these functions. A vacuum-environment treatment source in communication with the vacuum-environment treatment chamber provides a selected one or more of a hydrogen (H2)-based thermal anneal, an H2-based plasma treatment, or an ammonia (NH3)-based plasma treatment. In another embodiment, a method includes placing a semiconductor chip in a vacuum environment, performing a selected vacuum-environment treatment, and bonding the chip to a base wafer. A plurality of chips formed as dice on a semiconductor wafer may, of course, be simultaneously treated and bonded in this way as well, either before or after dicing.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: September 1, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Shi Liu, Chen-Hua Yu, Yuh-Jier Mii, Yuan-Chen Sun
  • Patent number: 9117659
    Abstract: The present disclosure disclosed a method of forming the buffer layer in the LTPS products. The method comprises the following steps: heating the substrate to make the alkali metal ions diffuse to the surface of the glass; washing the substrate by acid to remove the alkali metal ions on the surface of the glass; forming the buffer layer on the glass which has been heated and washed by acid, wherein the material of the buffer layer is SiOx. The method of the present disclosure based on the design of the single buffer layer, it can greatly promote the capacity and can economize the gas. Furthermore, it can avoid the cross contamination of the different layers so as to promote characteristic of the element.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: August 25, 2015
    Assignee: EVERDISPLAY OPTRONICS (SHANGHAI) LIMITED
    Inventors: YuanHsin Lee, MinChing Hsu
  • Patent number: 9117843
    Abstract: An engineered epitaxial region compensates for short channel effects of a MOS device by providing a blocking layer to reduce or prevent dopant diffusion while at the same time reducing or eliminating the side effects of the blocking layer such as increased leakage current of a BJT device and/or decreased breakdown voltage of a rectifier. These side effects are reduced or eliminated by a non-conformal dopant-rich layer between the blocking layer and the substrate, which lessens the abruptness of the junction, thus lower the electric field at the junction region. Such a scheme is particularly advantageous for system on chip applications where it is desirable to manufacture MOS, BJT, and rectifier devices simultaneously with common process steps.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: August 25, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: King-Yuen Wong, Chia-Yu Lu, Chien-Chang Su, Yen-Chun Lin, Yi-Fang Pai, Da-Wen Lin
  • Patent number: 9082627
    Abstract: A method for bonding at low or room temperature includes steps of surface cleaning and activation by cleaning or etching. The method may also include removing by-products of interface polymerization to prevent a reverse polymerization reaction to allow room temperature chemical bonding of materials such as silicon, silicon nitride and SiO2. The surfaces to be bonded are polished to a high degree of smoothness and planarity. VSE may use reactive ion etching or wet etching to slightly etch the surfaces being bonded. The surface roughness and planarity are not degraded and may be enhanced by the VSE process. The etched surfaces may be rinsed in solutions such as ammonium hydroxide or ammonium fluoride to promote the formation of desired bonding species on the surfaces.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: July 14, 2015
    Assignee: ZIPTRONIX, INC.
    Inventors: Qin-Yi Tong, Gaius Gillman Fountain, Jr., Paul M. Enquist
  • Patent number: 9082751
    Abstract: According to one embodiment, a half-FinFET semiconductor device comprises a gate structure formed over a semiconductor body. The semiconductor body includes a source region comprised of a plurality of fins extending beyond a first side of the gate structure and a continuous drain region adjacent a second side of the gate structure opposite the plurality of fins. The continuous drain region causes the half-FinFET semiconductor device to have a reduced ON-resistance. A method for fabricating a semiconductor device having a half-FinFET structure comprises designating source and drain regions in a semiconductor body, etching the source region to produce a plurality of source fins while masking the drain region during the etching to provide a continuous drain region, thereby resulting in the half-FinFET structure having a reduced ON-resistance.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: July 14, 2015
    Assignee: BROADCOM CORPORATION
    Inventors: Xiangdong Chen, Wei Xia
  • Patent number: 9064783
    Abstract: A direct bonding method between at least a first layer (104) comprising silicon oxide having a thickness equal to or higher than about 10 nm and a second layer (108) of material having hydrophilicity, comprising at least the steps of: making the first layer (104) on a first substrate (102) such that the absorbance value of this first layer (104), at a vibration frequency of silanol bonds present in the first layer (104) equal to about 3660 cm?1, is equal to or higher than about 1.5×10?5 nm?1, the silanol bonds being formed in at least part of the thickness of the first layer (104) which is equal to or higher than about 10 nm; direct bonding between the first layer (104) and the second layer (108).
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: June 23, 2015
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Chiara Sabbione, Lea Di Cioccio, Jean-Pierre Nieto, Laurent Vandroux
  • Patent number: 9064710
    Abstract: A transistor structure optimizes current along the A-face of a silicon carbide body to form an AMOSFET that minimizes the JFET effect in the drift region during forward conduction in the on-state. The AMOSFET further shows high voltage blocking ability due to the addition of a highly doped well region that protects the gate corner region in a trench-gated device. The AMOSFET uses the A-face conduction along a trench sidewall in addition to a buried channel layer extending across portions of the semiconductor mesas defining the trench. A doped well extends from at least one of the mesas to a depth within the current spreading layer that is greater than the depth of the trench. A current spreading layer extends between the semiconductor mesas beneath the bottom of the trench to reduce junction resistance in the on-state. A buffer layer between the trench and the deep well further provides protection from field crowding at the trench corner.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: June 23, 2015
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, Anant Agarwal, Charlotte Jonas
  • Patent number: 9064881
    Abstract: A die has a first surface, a second surface opposite the first surface, and sidewalls includes a first portion and a second portion, wherein the first portion is closer to the first surface than the second portion. A fillet contacts the first portion of sidewalls of the die and encircles the die. A work piece is bonded to the die through solder bumps, with the second surface facing the work piece. A first underfill is filled a gap between the die and the work piece, wherein the first underfill contacts the fillet, and wherein the first underfill and the fillet are formed of different materials.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: June 23, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Fu Tsai, Yian-Liang Kuo, Ming-Song Sheu, Yu-Ling Tsai, Chen-Shien Chen, Han-Ping Pu
  • Patent number: 9053966
    Abstract: An integrated circuit device that includes a plurality of multiple gate FinFETs (MuGFETs) is disclosed. Fins of different crystal orientations for PMOS and NMOS MuGFETs are formed through amorphization and crystal regrowth on a direct silicon bonded (DSB) hybrid orientation technology (HOT) substrate. PMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (110) crystal orientations. NMOS MuGFET fins are formed with channels defined by fin sidewall surfaces having (100) crystal orienations in a Manhattan layout with the sidewall channels of the different PMOS and NMOS MuGFETs aligned at 0° or 90° rotations.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: June 9, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Weize W. Xiong, Cloves R. Cleavelin, Angelo Pinto, Rick L. Wise
  • Patent number: 9035336
    Abstract: A semiconductor device has an active layer, a first semiconductor layer of first conductive type, an overflow prevention layer disposed between the active layer and the first semiconductor layer, which is doped with impurities of first conductive type and which prevents overflow of electrons or holes, a second semiconductor layer of first conductive type disposed at least one of between the active layer and the overflow prevention layer and between the overflow prevention layer and the first semiconductor layer, and an impurity diffusion prevention layer disposed between the first semiconductor layer and the active layer, which has a band gap smaller than those of the overflow prevention layer, the first semiconductor layer and the second semiconductor layer and which prevents diffusion of impurities of first conductive type.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: May 19, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Koichi Tachibana, Chie Hongo, Hajime Nago, Shinya Nunoue
  • Patent number: 9035433
    Abstract: An organic light emitting device comprises a first substrate; a thin film transistor layer provided on the first substrate; a light emitting diode layer provided on the thin film transistor layer; and a passivation layer provided on the light emitting diode layer, the passivation layer including a first inorganic insulating film and a second inorganic insulating film, wherein a content of H contained in the first inorganic insulating film is smaller than that of H contained in the second inorganic insulating film.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: May 19, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Jin Goo Kang, Young Hoon Shin
  • Patent number: 9012304
    Abstract: In one embodiment, a method of singulating semiconductor die from a semiconductor wafer includes forming a material on a surface of a semiconductor wafer and reducing a thickness of portions of the material. Preferably, the thickness of the material is reduced near where singulation openings are to be formed in the semiconductor wafer.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: April 21, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, John M. Parsey, Jr.
  • Patent number: 8981431
    Abstract: A semiconductor light emitting device including: a substrate made of GaAs; and a semiconductor layer formed on the substrate, in which part of the substrate on a side opposite to the semiconductor layer is removed by etching so that the semiconductor light emitting device has a thickness of not more than 60 ?m.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: March 17, 2015
    Assignee: Rohm Co., Ltd.
    Inventors: Tadahiro Hosomi, Kentaro Mineshita
  • Patent number: 8962452
    Abstract: In one embodiment, a method of singulating semiconductor die from a semiconductor wafer includes forming a material on a surface of a semiconductor wafer and reducing a thickness of portions of the material. Preferably, the thickness of the material is reduced near where singulation openings are to be formed in the semiconductor wafer.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: February 24, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Gordon M. Grivna
  • Patent number: 8952462
    Abstract: The present disclosure provides an apparatus that includes a semiconductor device. The semiconductor device includes a substrate. The semiconductor device also includes a first gate dielectric layer that is disposed over the substrate. The first gate dielectric layer includes a first material. The first gate dielectric layer has a first thickness that is less than a threshold thickness at which a portion of the first material of the first gate dielectric layer begins to crystallize. The semiconductor device also includes a second gate dielectric layer that is disposed over the first gate dielectric layer. The second gate dielectric layer includes a second material that is different from the first material. The second gate dielectric layer has a second thickness that is less than a threshold thickness at which a portion of the second material of the second gate dielectric layer begins to crystallize.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: February 10, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jian-Hao Chen, Da-Yuan Lee, Kuang-Yuan Hsu
  • Patent number: 8927382
    Abstract: A method of manufacturing a photo-semiconductor device that has a photoconductive semiconductor film provided with electrodes and formed on a second substrate, the semiconductor film being formed by epitaxial growth on a first semiconductor substrate different from the second substrate, the second substrate being also provided with electrodes, and the electrodes of the second substrate and the electrodes of the photoconductive semiconductor film being held in contact with each other.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: January 6, 2015
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshihiko Ouchi