Patents Examined by Jocelyn D Ram
  • Patent number: 9127989
    Abstract: A microwave ablation system incorporates a microwave thermometer that couples to a microwave transmission network connecting a microwave generator to a microwave applicator to measure noise temperature. The noise temperature is processed to separate out components the noise temperature including the noise temperature of the tissue being treated and the noise temperature of the microwave transmission network. The noise temperature may be measured by a radiometer while the microwave generator is generating the microwave signal or during a period when the microwave signal is turned off. The microwave ablation system may be configured as a modular system having one or more thermometry network modules that are connectable between a microwave applicator and a microwave generator. Alternatively, the modular system includes a microwave generator, a microwave applicator, and a microwave cable that incorporate a microwave thermometry network module.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: September 8, 2015
    Assignee: Covidien LP
    Inventors: Joseph D. Brannan, Casey M. Ladtkow
  • Patent number: 9125665
    Abstract: A sphincter tissue region is treated using a support structure sized for advancement into the anal canal. At least one electrode is carried by the structure. A mechanism is coupled to the electrode to move the electrode between a first position retracted in the support structure and a second position extended from the support structure through surface tissue to penetrate a subsurface tissue region at or near a sphincter in the anal canal. A cable is coupled to the electrode to conduct energy for application by the electrode to form a lesion in the subsurface tissue region.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: September 8, 2015
    Assignee: Mederi Therapeutics, Inc
    Inventors: David S. Utley, Scott West, John Gaiser
  • Patent number: 9119619
    Abstract: A treatment system includes a power source for heat generation which outputs power for heat generation, a grasping member having a heating element which applies the power for heat generation as thermal energy to a grasped living tissue and is disposed at a grasping surface, and a control section which repeats a first control mode of performing control such that the heating element reaches a first temperature and a second control mode of performing control such that the heating element becomes lower than the first temperature, and controls the power source for heat generation according to a temperature change parameter based on change in temperature of the heating element in the first control mode or the second control mode so as to end application of the thermal energy.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: September 1, 2015
    Assignee: OLYMPUS MEDICAL SYSTEMS CORP.
    Inventors: Yoshitaka Honda, Kazue Tanaka, Takashi Irisawa, Sadayoshi Takami
  • Patent number: 9121774
    Abstract: A microwave ablation system incorporates a microwave thermometer that couples to a microwave transmission network connecting a microwave generator to a microwave applicator to measure noise temperature. The noise temperature is processed to separate out components the noise temperature including the noise temperature of the tissue being treated and the noise temperature of the microwave transmission network. The noise temperature may be measured by a radiometer while the microwave generator is generating the microwave signal or during a period when the microwave signal is turned off. The microwave ablation system may be configured as a modular system having one or more thermometry network modules that are connectable between a microwave applicator and a microwave generator. Alternatively, the modular system includes a microwave generator, a microwave applicator, and a microwave cable that incorporate a microwave thermometry network module.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: September 1, 2015
    Assignee: Covidien LP
    Inventor: Joseph D. Brannan
  • Patent number: 9113906
    Abstract: An end effector assembly for use with a forceps includes a pair of jaw members, a knife assembly, and one or more cam assemblies. One or more of the jaw members are moveable relative to the other about a pivot between open and closed positions. One or more of the jaw members include a knife channel. The pivot includes first and second sections defining a passage therebetween. The knife assembly includes a knife blade and an actuation shaft. The knife blade is disposed distally relative to the pivot. The actuation shaft is configured for slidable translation through the passage to allow selective advancement of the knife blade through the knife channel. The one or more cam assemblies are operably coupled to the one or more moveable jaw members and are actuatable to move the one or more jaw members between the open and closed positions for grasping tissue therebetween.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: August 25, 2015
    Assignee: Covidien LP
    Inventor: Peter M. Mueller
  • Patent number: 9101733
    Abstract: An improved steerable catheter with biased, in-plane bi-directional deflection has an elongated catheter body, a deflectable intermediate section having a tubing with at least a first and a second off-axis opposing lumens for puller wires that define a plane of deflection, and a control handle at a proximal end of the catheter body. The deflectable intermediate section includes at least two elongated bias members that extend along the length and lie on a plane perpendicular to the plane of deflection so as to resist flexure outside of the plane of deflection. In a more detailed embodiment, the deflectable intermediate section has an integrated tubular construction that includes an inner layer, a braided mesh surrounding the inner layer and an outer layer, where the bias members can be situated between the inner layer and the braided mesh, or between the braided mesh and the outer layer.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: August 11, 2015
    Assignee: Biosense Webster, Inc.
    Inventor: Benjamin D. McDaniel
  • Patent number: 9095329
    Abstract: An electromagnetic thermotherapeutic apparatus includes: a plurality of needle units respectively having head portions and needle portions; a base unit having a base plate that is formed with a plurality of first through holes, and a base pad that is formed with a plurality of second through holes, the needle portions of the needle units removably extending through the second and first through holes, the head portions of the needle units abutting against the base pad; a temperature monitor disposed between the base plate and the base pad; an upper unit disposed above the base pad and abutting against the head portions; and a clamp unit clamping and pressing the base unit against the upper unit.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: August 4, 2015
    Assignee: National Cheng Kung University
    Inventors: Gwo-Bin Lee, Xi-Zhang Lin, Sheng-Chieh Huang, Yi-Yuan Chang, Yan-Shen Shan, Sheng-Jye Hwang, Tung-Jen Lee, Szu-Yin Chen, Ping-Hen Chen
  • Patent number: 9095348
    Abstract: An apparatus and method for use in performing ablation or coagulation of organs and other tissue includes a metallized fabric electrode array which is substantially absorbent and/or permeable to moisture and gases such as steam and conformable to the body cavity. Following placement of the ablation device into contact with the tissue to be ablated, an RF generator is used to deliver RF energy to the conductive regions and to thereby induce current flow from the electrodes to tissue to be ablated. As the current heats the tissue, moisture (such as steam or liquid) leaves the tissue causing the tissue to dehydrate. Suction may be applied to facilitate moisture removal. The moisture permeability and/or absorbency of the electrode carrying member allows the moisture to leave the ablation site so as to prevent the moisture from providing a path of conductivity for the current.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 4, 2015
    Assignee: Cytyc Surgical Products
    Inventors: Csaba Truckai, Russel Mahlon Sampson, Stephanie Squarcia, Alfonso Lawrence Ramirez, Estela Hilario
  • Patent number: 9095351
    Abstract: Apparatus and methods are provided to concentrate energy delivery in non-superficial target tissue within a trigone region of a human bladder wall to modulate bladder function.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: August 4, 2015
    Assignee: Amphora Medical, Inc.
    Inventors: Dan Sachs, Edwin J. Hlavka
  • Patent number: 9089314
    Abstract: A medical device is provided, having an elongate body defining a distal portion and a proximal portion; a first expandable member disposed on the distal portion of the elongate body and defining a cooling chamber therein, the first expandable member having a first rigidity; a second expandable member disposed around the first expandable member to define an interstitial region therebetween, where the second expandable member has a second rigidity less than the first rigidity; a gel disposed within the interstitial region; a coolant flow path in fluid communication with the cooling chamber; and a cryogenic coolant source in fluid communication with the coolant flow path.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: July 28, 2015
    Assignee: Medtronic CryoCath LP
    Inventor: Dan Wittenberger
  • Patent number: 9084592
    Abstract: A focal ablation assembly, used with an endoscope comprising an endoscopic tube, comprises a cryogenic catheter, a balloon and a reinforcing element. The cryogenic catheter is placeable within the endoscopic tube channel and has a distal end placeable at the distal end of the endoscopic tube. The balloon is mountable to the catheter distal end and extends distally of both of the distal ends. The reinforcing element at least partially defines the shape of the balloon in the expanded state. The balloon defines a balloon volume when expanded and has a thermally conductive therapeutic region which provides effectively no thermal insulation. In some examples the focal ablation assembly comprises a delivery catheter extending along the channel with a distal portion fluidly coupled to the balloon interior, whereby refrigerant can be introduced into the balloon interior and towards the therapeutic region by the delivery catheter.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 21, 2015
    Assignee: C2 THERAPEUTICS, INC.
    Inventors: Patrick P. Wu, Cesar A. Ico, Richard S. Williams
  • Patent number: 9072518
    Abstract: High-voltage pulses ablation systems and methods are used to ablate tissue and form lesions. A variety of different electrophysiology devices, such as catheters, surgical probes, and clamps, may be used to position one or more electrodes at a target location. Electrodes can be connected to power supply lines and, in some instances, the power to the electrodes can be controlled on an electrode-by-electrode basis. High-voltage pulse sequences provide a total amount of heating that is typically less than that which is observed with thermally-based radiofrequency energy ablation protocols.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: July 7, 2015
    Assignee: AtriCure, Inc.
    Inventor: David K. Swanson
  • Patent number: 9060776
    Abstract: In accordance with various embodiments, methods for controlling electrical power provided to tissue via a surgical device may comprise providing a drive signal. A power of the drive signal may be proportional to a power provided to the tissue via the surgical device. The methods may also comprise periodically receiving indications of an impedance of the tissue and applying a first composite power curve to the tissue, wherein applying the first composite power curve to the tissue comprises. Applying the first composite power curve to the tissue may comprise modulating a first predetermined number of first composite power curve pulses on the drive signal; and for each of the first composite power curve pulses, determining a pulse power and a pulse width according to a first function of the impedance of the tissue The methods may also comprise applying a second composite power curve to the tissue.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 23, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: David C. Yates, Scott B. Killinger, Mark A. Davison, Gavin M. Monson
  • Patent number: 9060775
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 23, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Patent number: 9050093
    Abstract: In accordance with various embodiments, methods to control electrical power provided to tissue via first and second electrodes may comprise providing a drive signal to the tissue via the first and second electrodes and modulating a power provided to the tissue via the drive signal based on a sensed tissue impedance according to a first power curve. The first power curve may define, for each of a plurality of potential sensed tissue impedances, a first corresponding power. The methods may also comprise monitoring a total energy provided to the tissue via the first and second electrodes. When the total energy reaches a first energy threshold, the methods may comprise determining whether an impedance of the tissue has reached a first impedance threshold.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: June 9, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Jeffrey L. Aldridge, Scott B. Killinger, Mark A. Davison
  • Patent number: 9050073
    Abstract: A cryogenic ablation catheter includes a catheter shaft, a balloon and a connector respectively at the catheter shaft proximal and distal ends, a refrigerant delivery tube assembly including a refrigerant delivery tube rotatable within the catheter shaft lumen, and a refrigerant delivery element with an outlet located inside the balloon which directs refrigerant outwardly against the balloon at different rotary positions as it rotates. A cryogenic balloon ablation system includes the cryogenic ablation catheter, a catheter coupler mating with the connector, a motor including a rotatable hollow motor shaft, and a delivery line fluidly coupled to a cryogenic gas source for supplying cryogenic gas to the refrigerant delivery tube. At least one of the refrigerant delivery tube and the delivery line passes at least partway through the hollow motor shaft. The coupling tip of the connector and the refrigerant delivery tube rotate with the motor shaft.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: June 9, 2015
    Assignee: C2 THERAPEUTICS, INC.
    Inventors: Gabriel Francis W. Newell, Timothy Douglas Holland, Cesar A. Ico, Patrick P. Wu, Richard Steven Williams
  • Patent number: 9044232
    Abstract: A medical heating device is based on an electrical heater formed out of a self-limiting conductive material, such as a conductive polymer or ceramic. An electrical resistance that gradually changes with temperature characterizes the material such that heat production from electrical current through the material varies with temperature. A thermally insulating jacket contains the self-limiting heater element, which can be coupled to an electrical power supply. A probe thermally coupled to the heater extends outward from the jacket. The self-limiting medical heating device can be used by touching the end of the probe to target tissue, such as skin, adipose tissue, nerves, glands, vascular tissue, or abnormal growths or tumors to effect the desired treatment, typically by thermally ablating, cutting, or shrinking the target tissue where touched by the probe or in the vicinity therein.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: June 2, 2015
    Assignee: Curo Medical, Inc.
    Inventors: Tai Chun Cheng, Elbert T. Cheng, Jacqueline T. Cheng, Ivy Y. Cheng
  • Patent number: 9044245
    Abstract: A method of ablating an epicardial tissue region, including positioning a medical device adjacent the epicardial tissue region, the medical device having a first electrode, a second electrode, and a third electrode located in between the first and second electrodes; delivering an irrigation fluid to the tissue region; and ablating at least a portion of the tissue region by sequentially activating the third electrode in a monopolar radiofrequency delivery mode and activating the first and second electrodes in a bipolar radiofrequency delivery mode.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: June 2, 2015
    Assignee: Medtronic Ablation Frontiers LLC
    Inventors: Catherine R. Condie, Sarah E. Ahlberg
  • Patent number: 9039732
    Abstract: A forceps includes first and second shaft members each having a jaw member disposed at a distal end thereof. One (or both) of the first and second jaw members is moveable relative to the other between a spaced-apart position and an approximated position for grasping tissue therebetween. The first jaw member includes a jaw frame fixedly engaged to the first shaft member and a disposable jaw housing releasably engageable with the jaw frame. The disposable jaw housing includes a knife assembly disposed therein. The knife assembly includes a knife blade biased toward an initial position, wherein the knife blade is disposed within the jaw housing. The knife blade is moveable between the initial position and an extended position, wherein the knife blade extends at least partially from the jaw housing to cut tissue grasped between the first and second jaw members.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: May 26, 2015
    Assignee: Covidien LP
    Inventors: Grant T. Sims, Chase Collings, Jeffrey R. Townsend
  • Patent number: 9039695
    Abstract: In accordance with various embodiments, methods for controlling electrical power provided to tissue via a surgical device may comprise providing a drive signal to a surgical device; receiving an indication of an impedance of the tissue; calculating a rate of increase of the impedance of the tissue; and modulating the drive signal to hold the rate of increase of the impedance greater than or equal to a predetermined constant.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: May 26, 2015
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: James R. Giordano, Scott B. Killinger