Patents Examined by John D Schneible
  • Patent number: 11420901
    Abstract: Coated glass or glass ceramic substrates having high temperature resistance, high strength, and a low coefficient of thermal expansion. The coating includes pores, is fluid-tight and suitable for coating a temperature-resistant, high-strength glass or glass ceramic substrate with a low coefficient of thermal expansion, and to a method for producing such a coated substrate.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: August 23, 2022
    Assignee: SCHOTT AG
    Inventors: Yvonne Menke-Berg, Stephanie Mangold, Matthias Bockmeyer, Vera Steigenberger, Adam O'Ryan, Matthew Moose, Michael Schwall
  • Patent number: 11376817
    Abstract: Wear resistant articles are described herein which, in some embodiments, mitigate CTE differences between wear resistant components and metallic substrates. In one aspect, an article comprises a layer of sintered cemented carbide bonded to a layer of iron-based alloy via a metal-matrix composite bonding layer, wherein coefficients of thermal expansion (CTE) of the sintered cemented carbide layer, metal matrix composite bonding layer, and iron-based alloy layer satisfy the relation: x = ( ? C ? ? T ? ? E ? ? WC - C ? ? T ? ? E ? ? M ? ? M ? ? C ? ) ( ? C ? ? T ? ? E ? ? M ? ? M ? ? C - C ? ? T ? ? E ? ? Fe ? ) wherein 0.5?x?2 and CTE WC, CTE MMC and CTE Fe are the CTE values for the sintered cemented carbide, metal matrix composite, and iron-based alloy in 1/K respectively at 900° C. to 1100° C.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: July 5, 2022
    Assignee: KENNAMETAL INC.
    Inventors: Martin G. Perez, Michael J. Meyer, Qingjun Zheng
  • Patent number: 11352699
    Abstract: The present disclosure relates to tungsten bronze thin films and method of making the same. Specifically, the present disclosure relates to a thin, homogeneous, highly conducting cubic tungsten bronze film with densely packed micron size particles and the process of making the film.
    Type: Grant
    Filed: May 23, 2019
    Date of Patent: June 7, 2022
    Assignee: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Niluka D. Wasalathanthri, David A. Kriz, Madhavi N. Pahalagedara, Wimalika Thalgaspitiya, Dinithi Rathnayake
  • Patent number: 11332817
    Abstract: A machine component includes a core made up of a steel for machine structural use, and a medium carbon-containing layer and a high carbon-containing layer formed of the steel for machine structural use, the medium carbon-containing layer covering the core, the high carbon-containing layer covering the medium carbon-containing layer and having a carbon concentration of 0.8-1.5%. The high carbon-containing layer is made up of a martensitic structure having carbides dispersed therein and a residual austenitic structure, wherein spheroidized carbides with an aspect ratio of 1.5 or less constitute 90% or more of a total number of the carbides, and the number of spheroidized carbides on prior austenite grain boundaries is 40% or less of the total number of the carbides.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: May 17, 2022
    Assignee: KOMATSU LTD.
    Inventors: Kensuke Sato, Koji Yamamoto, Yusuke Hiratsuka, Kazuya Hashimoto
  • Patent number: 11332803
    Abstract: A high-strength hot-dip galvanized steel sheet contains predetermined amounts of C, Si, Mn, P, S, N, O, sol. Al, Ti, and B, 0.1 to 1.5 mass % of Cr+2×Mo, and a balance in a form of Fe and inevitable impurities. A steel structure includes, in area %, ferrite: 1 to 50%, martensite: 20 to 70%, residual austenite: 0 to 5%, pearlite: 0 to 5%, MA and cementite having 0.2 ?m or more grain size: 0 to 5% in total, and a balance in a form of bainite. A number density of MA or cementite having 0.2 ?m or more grain size and isolated in ferrite or bainite grains is 100 pcs/1000 ?m2 or less, and an average hardness of martensite is in a range from 330 to 500 Hv.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 17, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takafumi Yokoyama, Yuji Yamaguchi, Masahiro Nakata, Kunio Hayashi, Satoshi Uchida, Takuma Kawanaka
  • Patent number: 11331882
    Abstract: [Problem] To provide a metal/fiber-reinforced resin material composite in which a metal member and a fiber-reinforced resin material are firmly bonded, a light weight and excellent workability are obtained while the strength is enhanced, and the amount of the fiber-reinforced resin material used can be reduced.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: May 17, 2022
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Masaharu Ibaragi, Noriyuki Negi, Masafumi Usui, Masako Nakai
  • Patent number: 11293569
    Abstract: The threaded connection for pipes includes a pin, a box and a Zn—Ni alloy plating layer. The pin has a pin-side contact surface that includes a pin-side thread part. The box has a box-side contact surface that includes a box-side thread part. The Zn—Ni alloy plating layer is formed on at least one of the pin-side contact surface and the box-side contact surface. The Zn—Ni alloy plating layer is consisting of Zn, Ni, trace amount of Cr and impurities. The trace amount of Cr content of the Zn—Ni alloy plating layer is 5.0×10 counts/sec or more in terms of Cr intensity as measured by secondary ion mass spectrometry using O2+ ions as bombarding ions.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: April 5, 2022
    Assignees: Nippon Steel Corporation, Vallourec Oil and Gas France
    Inventors: Masanari Kimoto, Masahiro Oshima
  • Patent number: 11279112
    Abstract: An object of the invention is to provide a coating laminated body in which coatings not containing hexavalent chromium which is an environmental concern material, and excellent in corrosion resistance and wear resistance are laminated on a base material, and to provide a method for producing the same. The coating laminated body according to the invention is a laminated body in which a multiple-layer coating is laminated on a base material. The multiple-layer coating includes: a plurality of layers of S-containing Ni alloy coatings; and a sulfur concentrated layer that is formed between the plurality of layers of S-containing Ni alloy coatings and has an S concentration higher than an S concentration of the S-containing Ni alloy coatings. Each of the plurality of layers of S-containing Ni alloy coatings has a Ni concentration of 90% or more by mass, and a difference in Ni concentration between the coatings is within 1% by mass.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: March 22, 2022
    Assignee: Hitachi, Ltd.
    Inventors: Toshinori Kawamura, Hiroshi Kanemoto
  • Patent number: 11267225
    Abstract: A metal-clad laminated board includes an insulating layer and a metal layer in contact with at least one surface of the insulating layer. The insulating layer includes a cured product of a thermosetting resin composition containing a reaction product of a polyphenylene ether and an epoxy compound. The polyphenylene ether has 1.5 to 2 hydroxyl groups on average in one molecule, and the epoxy compound has 2 to 2.3 epoxy groups on average in one molecule. In the metal-clad laminated board, the reaction product has a terminal hydroxyl group concentration of 700 ?mol/g or less. The metal layer includes a metal substrate and a barrier layer containing cobalt. The barrier layer is provided on the metal substrate at a side close to a contact surface of the metal layer with the insulating layer. The contact surface has surface roughness of 2 ?m or less in ten-point average roughness Rz.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: March 8, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Tatsuya Arisawa, Tomoyuki Abe, Shunji Araki, Yuki Inoue
  • Patent number: 11268188
    Abstract: A method of forming a surface coating on a component of an electronic device can include depositing an aluminum layer including at least about 0.05 weight percent (wt %) of a grain refiner on a surface of the component by a physical vapor deposition process, and anodizing the aluminum layer to form an anodized aluminum oxide layer having a L* value greater than about 85 in the CIELAB color space.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: March 8, 2022
    Assignee: Apple Inc.
    Inventors: Brian S. Tryon, Alexander W. Williams, James A. Curran, Sonja R. Postak
  • Patent number: 11268194
    Abstract: A metal-plated carbon material includes: a carbon material; and a metal layer covering a surface of the carbon material, in which, in the metal layer, crystal grains forming the metal layer have an average crystal grain size of 110 nm or less. A method of manufacturing a metal-plated carbon material, includes: a metal complex fixation step of immersing a carbon material in a supercritical fluid or subcritical fluid containing an organometallic complex of a first metal; and a first energization deposition step of energizing the metal-complex-fixed carbon material in an electroless plating solution containing a second metal.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: March 8, 2022
    Assignee: YAZAKI CORPORATION
    Inventors: Yutaka Handa, Hiroki Kondo, Satoko Hongo, Yusuke Yoshikawa
  • Patent number: 11261510
    Abstract: A cutting tool made of a cemented carbide substrate of WC, a metallic binder phase and gamma phase is provided. The cemented carbide has a well distributed gamma phase and a reduced amount of abnormal WC grains. The cutting tool has a more predicted tool life and an increased resistance against plastic deformation.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: March 1, 2022
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Leif Akesson, Anders Stenberg, Carl-Johan Maderud, Susanne Norgren, Elias Forssbeck Nyrot
  • Patent number: 11264750
    Abstract: Provided is a tin-plated copper terminal material, a terminal formed from the terminal material, and an electric-wire terminal structure using the terminal: the terminal material has a substrate of copper or a copper alloy; an intermediate zinc layer of a zinc alloy that is formed on the substrate and has a thickness of 0.10 ?m to 5.00 ?m; and a tin layer of tin or a tin alloy that is formed on the intermediate zinc layer and in which the length proportion occupied by low-angle grain boundaries is 2% to 30% with respect to the total length of all crystal grain boundaries; wherein galvanic corrosion is effectively suppressed.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: March 1, 2022
    Assignee: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kenji Kubota, Yoshie Tarutani, Kiyotaka Nakaya
  • Patent number: 11248275
    Abstract: A warm-workable high-strength steel sheet having superior warm workability and residual ductility after warm working, and a method for manufacturing such steel sheets. The warm-workable high-strength steel sheet has a chemical composition including, in mass %, C: 0.05 to 0.20%, Si: not more than 3.0%, Mn: 3.5 to 8.0%, P: not more than 0.100%, S: not more than 0.02%, Al: 0.01 to 3.0% and N: not more than 0.010%, the balance being Fe and inevitable impurities. The steel sheet has a microstructure that includes, in area fractions, 10 to 60% retained austenite, 10 to 80% ferrite, 5 to 50% martensite and 0 to 5% bainite, the C content in the retained austenite being less than 0.40 mass %.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: February 15, 2022
    Assignee: JFE STEEL CORPORATION
    Inventors: Hiroshi Hasegawa, Yoshimasa Funakawa
  • Patent number: 11215227
    Abstract: A sliding member includes a back-metal layer including an Fe alloy and a sliding layer including a copper alloy including 0.5 to 12 mass % of Sn and the balance of Cu and inevitable impurities. A cross-sectional structure of the sliding layer includes first copper alloy grains in contact with a bonding surface and second copper alloy grains not in contact with the bonding surface. The first and second grains have an average grain size D1 and D2 respectively. D1 is 30 to 80 ?m; and D1/D2=0.1 to 0.3. In the cross-sectional structure, the second grains includes third grains that includes internal grains therein that are not in contact with a grain boundary of the third grains. A total area S1 of the third grains and a total area of the second copper alloy grains S2 satisfy: S0/S2=0.25 to 0.80.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: January 4, 2022
    Assignee: DAIDO METAL COMPANY LTD.
    Inventor: Masahiro Nakai
  • Patent number: 11208703
    Abstract: A nickel-containing steel for low temperature service having a determined chemical composition of a Ni content of from 5.0 to 8.0%, in which the volume fraction of retained austenite in a region of 1.5 mm from a surface in the thickness direction is from 3.0 to 20.0% by volume, and the ratio of the hardness in a region of 1.0 mm from a surface in the thickness direction to the hardness in a region of ¼ of the thickness from a surface in the thickness direction is 1.1 or less, and a low-temperature tank using the nickel-containing steel for low temperature service.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: December 28, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Kazuyuki Kashima, Takayuki Kagaya
  • Patent number: 11193536
    Abstract: A sliding member includes a back-metal layer including an Fe alloy and a sliding layer including a copper alloy including 0.5 to 12 mass % of Sn and the balance of Cu and inevitable impurities. The sliding layer has a cross-sectional structure perpendicular to a sliding surface of the sliding layer. The cross-sectional structure includes first copper alloy grains that are in contact with a bonding surface of the back-metal layer and second copper alloy grains that are not in contact with the bonding surface. The first copper alloy grains has an average grain size D1 and the second copper alloy grains has an average grain size D2. D1 and D2 satisfy the following relations: D1 is 30 to 80 ?m; and D1/D2=0.1 to 0.3.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: December 7, 2021
    Assignee: DAIDO METAL COMPANY LTD.
    Inventor: Masahiro Nakai
  • Patent number: 11186066
    Abstract: Gypsum boards formed from synthetic gypsum and other gypsum sources having high chloride salt concentrations. The gypsum boards may include a set gypsum board core layer between a front and back paper cover sheets. The back paper cover sheet has a plurality of perforations extending therethrough. Methods of making the gypsum boards, and a wall system for employing the gypsum boards, are also provided. The concentration of the chloride anion in aqueous gypsum slurry used to make the set gypsum board core layer and to perform the methods of the invention may range from about 500 ppm to about 3000 ppm, typically from about 500 ppm to about 2000 ppm per 1,000,000 parts by weight calcium sulfate hemihydrate, more typically from about 500 ppm to about 1500 ppm per 1,000,000 parts by weight calcium sulfate hemihydrate.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 30, 2021
    Assignee: UNITED STATES GYPSUM COMPANY
    Inventors: Mark Hemphill, Qinghua Li, Charles W. Cochran
  • Patent number: 11186067
    Abstract: Gypsum boards formed from synthetic gypsum and other gypsum sources having high chloride salt concentrations. Gypsum boards may include a board core including set gypsum. A total concentration of the chloride anion in the board core ranges from about 500 ppm to about 3000 ppm, typically about 1000 ppm to about 3000 ppm, based on weight of the calcium sulfate hemihydrate. An inner surface of a front paper cover sheet contacts a first face of the board core. An inner surface of a back paper cover sheet contacts a second face of the board core. A starch layer coats the inner surface of at least one of the front and back cover sheet. Methods of making the gypsum board, and a wall system for employing the gypsum boards, are also provided.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: November 30, 2021
    Assignee: UNITED STATES GYPSUM COMPANY
    Inventors: Qinghua Li, Runhai Lu, Charles W. Cochran, Mark Hemphill
  • Patent number: 11174539
    Abstract: The steel material according to the present disclosure contains a chemical composition consisting of, in mass %, C: 0.20 to 0.50%, Si: 0.05 to 0.50%, Mn: 0.05 to 1.00%, P: 0.030% or less, S: 0.0100% or less, Al: 0.005 to 0.100%, Cr: 0.10 to 1.50%, Mo: 0.25 to 1.50%, Ti: 0.002 to 0.050%, N: 0.0100% or less and O: 0.0100% or less, with the balance being Fe and impurities. The steel material contains an amount of dissolved C within a range of 0.010 to 0.050 mass %. The steel material also has a yield strength within a range of 655 to less than 862 MPa, and a yield ratio of the steel material is 85% or more.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: November 16, 2021
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroki Kamitani, Atsushi Soma, Shinji Yoshida, Yuji Arai, Seiya Okada