Patents Examined by John Denny Li
  • Patent number: 11857267
    Abstract: Disclosed is a system for assisting in guiding and performing a procedure on a subject. The subject may be any appropriate subject such as inanimate object and/or an animate object. The guide and system may include various manipulable or movable members, such as robotic systems, and may be registered to selected coordinate systems.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: January 2, 2024
    Assignee: Medtronic Navigation, Inc.
    Inventors: Leo Bredehoft, Brad Jacobsen, Shai Ronen
  • Patent number: 11857301
    Abstract: Systems are provided for detecting the flow of blood in vasculature by illuminating the blood with a source of coherent illumination and detecting one or more time-varying properties of a light speckle pattern that results from the scattering of the coherent illumination by tissue and blood. The movement of blood cells and other light-scattering elements in the blood causes transient, short-duration changes in the speckle pattern. High-frequency sampling or other high-bandwidth processing of a detected intensity at one or more points in the speckle pattern could be used to determine the flow of blood in the vasculature. Such flow-measuring systems are also presented as wearable devices that can be operated to detect the flow in vasculature of a wearer. Systems and methods provided herein can additionally be applied to measure flow in other scattering fluid media, for example in a scattering industrial, medical, pharmaceutical, or environmental fluid.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: January 2, 2024
    Assignee: Verily Life Sciences LLC
    Inventors: Andrew Homyk, Russell Norman Mirov
  • Patent number: 11844645
    Abstract: Described are non-invasive methods and associated embodiments for determining an indicator of hemodynamic function using a lumped parameter model of cardiovascular function. The model uses data obtained using a non-invasive cardiovascular imaging modality such as Doppler echocardiography as well as blood pressure data. Various embodiments allow for the diagnosis, monitoring or prognosis of cardiovascular disease including complex valvular, vascular and ventricular diseases (C3VI) as well as prospectively assessing the effect of interventions on cardiovascular function and heart workload.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: December 19, 2023
    Inventor: Zahra Keshavarz Motamed
  • Patent number: 11839461
    Abstract: Aspects of the present disclosure are directed to apparatuses for generating a magnetic field for tracking of a target object. Such an apparatus may include a localized magnetic field transmitter that generates a magnetic field and exhibits minimal X-ray absorption when used in proximity to a fluoroscopic imaging system, for example.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: December 12, 2023
    Inventors: Alon Izmirli, Guy Hevel, Adrian Herscovici, Yuval Vaknin, David Jacobs
  • Patent number: 11826208
    Abstract: A surgical imaging system is described. The system includes first and second optical assemblies. Each optical assembly defines a respective optical axis, and each includes a respective set of one or more optics for adjusting field-of-view (FOV) and focus and a respective camera for capturing an image. The system includes a controller for controlling the optical assemblies and for switching the surgical imaging system between a coupled configuration and an uncoupled configuration. In the coupled configuration, the first optical assemblies are controlled to adjust the respective sets of optics and/or the respective optical axes in dependence on each other. In the uncoupled configuration, the optical assemblies are controlled to adjust the respective sets of optics, and the respective optical axes independently of each other.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: November 28, 2023
    Inventors: Michael Frank Gunter Wood, Cameron Anthony Piron, Tammy Kee-Wai Lee, Kamyar Abhari, Kai Michael Hynna
  • Patent number: 11813123
    Abstract: Ultrasound imaging is a non-invasive, non-radioactive, and low cost technology for diagnosis and identification of implantable medical devices in real time. Developing new ultrasound activated coatings is important to broaden the utility of in vivo marking by ultrasound imaging. Ultrasound responsive macro-phase segregated micro-composite thin films were developed to be coated on medical devices composed of multiple materials and with multiple shapes and varying surface area. The macro-phase segregated in films having silica micro-shells in polycyanoacrylate produces strong color Doppler signals with the use of a standard clinical ultrasound transducer. Electron microscopy showed a macro-phase separation during slow curing of the cyanoacrylate adhesive, as air-filled silica micro-shells were driven to the surface of the film. The air sealed in the hollow space of the silica shells acted as an ultrasound contrast agent and echo decorrelation of air exposed to ultrasound waves produces color Doppler signals.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: November 14, 2023
    Inventors: Jian Yang, Alexander Liberman, James Wang, Christopher Barback, Natalie Mendez, Erin Ward, Sarah Blair, Andrew C. Kummel, Tsai-Wen Sung, William C. Trogler
  • Patent number: 11813116
    Abstract: An imaging catheter assembly is provided. In one embodiment, the imaging catheter assembly includes a flexible elongate member including a distal portion and a proximal portion; and an imaging component coupled to the distal portion of the flexible elongate member, wherein the imaging component includes: an integrated circuit (IC) layer that includes a semiconductor material; an array of ultrasound transducer elements coupled to a first side of the IC layer; and a backing layer coupled to a second side of the IC layer opposite the first side, wherein the backing layer includes a backing material, and wherein a coefficient of thermal expansion (CTE) difference between the semiconductor material and the backing material is less than 23 parts per million per degree Centigrade (ppm/C).
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: November 14, 2023
    Inventor: Richard Edward Davidsen
  • Patent number: 11813110
    Abstract: The present disclosure is directed towards systems and methods for detecting and sizing mineralized tissue. An exemplary method, according to an embodiment of the present disclosure, can provide for imaging a region of interest containing the mineralized tissue with unfocused ultrasound beams via a primary imaging method. The method can then provide for computing a wavefront coherence at the imaged region of interest. The method can then provide for segmenting pixels of the imaged region of interest based on their intensities and intensities of surrounding pixels. The method can then provide for identifying a border and a shadow of the mineralized tissue based on the segmenting. Then, the method can provide for calculating a size of the mineralized tissue based on the border and the shadow.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 14, 2023
    Inventors: Brett C. Byram, Ryan S. Hsi, Jaime E. Tierney
  • Patent number: 11801374
    Abstract: The present disclosure includes system, methods, and kits relating to creating a second structure with a plurality of first structures at a target site inside or adjacent to a host object. The methods include the step of generating a field that non-invasively penetrates into the host object. The methods further include the step of positioning a first portion of the plurality of first structures at the target site using a force corresponding to the field. Additionally, the methods include the step of linking the first portion of the plurality of first structures with one another and/or the host object at the target site to form the second structure.
    Type: Grant
    Filed: September 1, 2017
    Date of Patent: October 31, 2023
    Assignee: The General Hospital Corporation
    Inventors: Li Li, Guillermo J. Tearney
  • Patent number: 11793487
    Abstract: Techniques of this disclosure are for a transducer array device, method and system. An ultrasound wrap for securing an array of piezoelectric transducers at a thoracic cavity anterior for echocardiology imaging, the ultrasound wrap including a transducer portion having an array of piezoelectric transducers mounted to an inner concave surface of a semi-rigid structure, and a securing portion extending from the transducer portion and comprising flexible material securely fitting around the thorax of a patient limiting the movement of the transducer portion.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: October 24, 2023
    Inventors: Annamarie Saarinen, Paul Saarinen
  • Patent number: 11793494
    Abstract: An ultrasound probe of the present invention has a piezoelectric element and a backing material disposed on one direction side with respect to the piezoelectric element, the backing material containing heat conductive particles. The backing material has a heat conductivity of 2.0 W/mk or more, and the content of the heat conductive particles is less than 30 vol % based on the total volume of the backing material.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: October 24, 2023
    Assignee: KONICA MINOLTA, INC.
    Inventor: Kiyokazu Morita
  • Patent number: 11793408
    Abstract: The present disclosure relates to method for predicting location and depth of abnormal tissue in breast tissue by prediction system. The prediction system predicts location based on 2D thermal image generated based on temperature values and intermediate temperature values. The intermediate temperature values are estimated using triangular and rectangular patterns formed on pre-defined model of breast, thermal conductivity of breast tissue, 2D coordinates on one of triangular and rectangular patterns and temperature values at steady state of breast tissue. The depth is predicted based on 3D thermal image of breast tissue generated using temperature values and intermediate temperature values and error parameter.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: October 24, 2023
    Inventors: Seema Ansari, Muralidharan Malamal Neelanchery, Arathy Kottapurath, Eva Ignatious, Ranjith Kizhupadath Ravindran, Deepak Puthan Purayil, Sudheesh Raveendran Nair Sarojini, Satheesan Balasubramanian
  • Patent number: 11793595
    Abstract: A therapeutic apparatus for therapeutic ultrasonic treatment of a tissue region that contains a flowing liquid has at least one ultrasonic source and a control unit for activating the ultrasonic source in order to radiate ultrasonic pulses according to a pulse parameter set into the tissue region. The therapeutic apparatus has a measuring system configured to determine a flow velocity of the liquid and a focus control system configured to move a focus region of the ultrasonic pulse relative to the tissue region over a longitudinal portion. A movement direction of the focus region therein corresponds to a flow direction of the liquid and a movement velocity of the focus region corresponds to the flow velocity.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: October 24, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Alois Regensburger, Tobias Lenich
  • Patent number: 11793543
    Abstract: An automatic insertion device and method of using the same is provided. A vibrator and an extender are connected to a penetrating member and are both in electrical communication with a controller. A detector identifies a subcutaneous target for insertion and the insertion angle, distance and trajectory for the penetrating member are calculated. The vibrator provides vibrations to the penetrating member and the extender advances the penetrating member for insertion. The vibrator and extender are in electrical communication with one another during the insertion process and adjustments to the insertion speed are made based on feedback of vibrational load encountered by the vibrator during insertion, and adjustments to the vibrations are made based on feedback of insertion load encountered by the extender during insertion. Iterative samples are taken to constantly adjust the operation of one motor based on the operations and feedback from the other motor.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 24, 2023
    Assignees: Obvius Robotics, Inc., Baylor College of Medicine
    Inventors: Roger B. Bagwell, Ryan S. Clement, Maureen L. Mulvihill, Casey A. Scruggs, Kevin A. Snook, William E. Cohn, James Patrick Herlihy, Kenneth Wayne Rennicks
  • Patent number: 11786138
    Abstract: A system for facilitating arterial blood gas (ABG) sampling. The system includes a main part, a first plurality of pulse sensors attached in a row on an inner surface of the main part, a first plurality of lights attached in a row on an external surface of the main part, a first opening on the main part adjacent to the first plurality of pulse sensors, and a processor. The processor is configured to receive a first plurality of radial pulse intensities from the first plurality of pulse sensors, determine a highest radial pulse intensity among the first plurality of radial pulse intensities, and turn on a light from the first plurality of lights associated with the highest pulse intensity among the first plurality of radial pulse intensities.
    Type: Grant
    Filed: March 20, 2021
    Date of Patent: October 17, 2023
    Inventor: Omid Ahmadvand
  • Patent number: 11786128
    Abstract: A method for visualizing details in a sample including directing an excitation beam to an excitation location below a surface of the sample, to generate signals in the sample; directing an interrogation beam toward the excitation location of the sample; directing a signal enhancement beam to the sample, to raise a temperature of a portion of the sample by 5 Kelvin or less, compared to a temperature of the portion of the sample in absence of the signal enhancement beam; detecting a portion of the interrogation beam returning from the sample that is indicative of the generated signals.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: October 17, 2023
    Inventors: Parsin Haji Reza, Zohreh Hosseinaee, Kevan Bell, Saad Abbasi, Benjamin Ecclestone
  • Patent number: 11779311
    Abstract: An ultrasound imaging system performs spectral Doppler processing in a manner that considers a physiological cycle of a subject. In one embodiment, gaps in a spectral Doppler signal are filled taking by a processor that analyzes changes in the spectral Doppler signal caused by a physiological cycle. Spectral Doppler data are scaled to fit with the data occurring before and after a gap. The firing order of an interleaved imaging mode can also be adjusted so that spectral Doppler imaging is not interrupted during pre-defined or user defined portions of a physiological cycle.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: October 10, 2023
    Assignee: FUJIFILM SonoSite, Inc.
    Inventors: Zoran Banjanin, Andrew Lundberg
  • Patent number: 11771379
    Abstract: The present disclosure provides methods for in-vivo assessment of the location and extent of blood flow stasis regions inside a cardiac chamber or blood vessel and systems for performing the methods. The disclosure provides methods for assessing risk of intracardiac or intravascular thrombus or of embolism originating in a cardiac chamber or vessel, and methods for assessing the need for and/or optimization of cardiac resynchronization therapy.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: October 3, 2023
    Assignees: The Regents of the University of California, Fundación para la Investigación Biomédica del Hospital Gregorio Marañó
    Inventors: Juan Carlos del Alamo de Pedro, Lorenzo Rossini, Andrew Kahn, Javier Bermejo, Pablo Martínez-Legazpi, Raquel Yotti Alvarez
  • Patent number: 11771326
    Abstract: A system for capturing, storing and comparing dermatological images includes two components, namely, a handheld exam control and a patient interface. The handheld exam control includes a camera, display screen, illuminator and a position sensor. The patient interface includes a patient position template and a position sensor interface. The system captures an image sequence and the precise location of each image. Images may be compared to previous images by a clinician.
    Type: Grant
    Filed: December 10, 2021
    Date of Patent: October 3, 2023
    Assignee: Design Net Technical Products, Inc.
    Inventor: Robert J. Bouthillier
  • Patent number: 11766243
    Abstract: A method for ascertaining the presence of target-bound microbubbles in the context of ultrasound molecular imaging is taught. This method, referred to herein as dynamic scaling ultrasound molecular imaging, relies upon the time-varying behavior contrast agents within a region expressing a molecular imaging target and that within a reference region. Ultrasound contrast agents compositions that enable use of the method are also taught. The method is useful for the use of ultrasound molecular imaging in diagnosing and monitoring treatment.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 26, 2023
    Assignee: Trust Bio-Sonics, Inc.
    Inventors: Joshua Rychak, Shih-Tsung Kang, ChungHsin Wang