Patents Examined by John Douglas
  • Patent number: 7407571
    Abstract: A novel apparatus for producing sweet synthetic crude from a heavy hydrocarbon feed includes: an upgrader for receiving the heavy hydrocarbon feed and producing a distillate fraction including sour products, and high-carbon content by-products; a gasifier for receiving the high-carbon content by-products and producing synthetic fuel gas and sour by-products; a hydroprocessing unit for receiving the sour by-products and hydrogen gas, thereby producing gas and sweet crude; and a hydrogen recovery unit for receiving the synthetic fuel gas and producing further hydrogen gas and hydrogen-depleted synthetic fuel gas, the further hydrogen gas being supplied to the hydroprocessing unit.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: August 5, 2008
    Assignee: Ormat Industries Ltd.
    Inventors: Philip Rettger, Randall Goldstein, Jim Arnold, Yoram Bronicki, J. Robert Friday
  • Patent number: 7384537
    Abstract: According to the method of manufacturing refined oil of the present invention, refined oil which has a viscosity of 20 cst or lower at 135° C., a pour point of 30° C. or lower, an alkali metal content of 1 wt ppm or less, a vanadium content of 10 wt ppm or less and a sulfur content of 0.3 wt % or lower can be prepared, by bringing feed oil into contact with hydrogen in the presence of the demetalizing/desulfurizing catalyst 3 and the hydrogenolysis catalyst 5. This method can decrease the viscosity, pour point and sulfur concentration of the refined oil to sufficiently low levels, and decreases the production cost.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: June 10, 2008
    Assignee: JGC Corporation
    Inventors: Shigeki Nagamatsu, Makoto Inomata, Susumu Kasahara
  • Patent number: 7374665
    Abstract: A method of blending delayed coker feedstocks to produce a coke that is easier to remove from a coker drum. A first feedstock is selected having less than about 250 wppm dispersed metals content and greater than about 5.24 API gravity. A second delayed coker feedstock is blended with said first resid feedstock so that the total dispersed metals content of the blend will be greater than about 250 wppm and the API gravity will be less than about 5.24.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: May 20, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Christopher P. Eppig, Michael Siskin, Fritz A. Bernatz, Charles J. Mart
  • Patent number: 7371317
    Abstract: A delayed coking process for producing more uniform and higher quality coke by increasing the drum inlet temperature of the feedstock at least 2° F. during a fill cycle.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: May 13, 2008
    Assignee: Conocophillips.Company
    Inventors: Bruce A. Newman, Ivan G. McConkey, Bruce R. Goddard, James R. Roth
  • Patent number: 7371316
    Abstract: A catalytic composition useful for cracking and reducing the viscosity of heavy hydrocarbons. The catalytic composition comprises Portland cement, a volcanic ash component, titanium dioxide, and a transition metal salt. Optionally, a hydrogen source is added to the catalytic composition.
    Type: Grant
    Filed: July 24, 2003
    Date of Patent: May 13, 2008
    Inventor: Jeffrey P. Newton
  • Patent number: 7361266
    Abstract: The present invention is related to a method of subjecting a feed oil to a refining process. This method includes a fractional distillation step 1 in which a feed oil is separated into a distillate oil M1 and a bottom oil M2 by a distillation process, a separation step in which the bottom oil is separated into a bottom light oil and a residue, and a hydrorefining step 3 in which the obtained distillate oil M1 and the bottom oil M2 are subjected to hydrorefining in the presence of hydrogen and a catalyst. In the hydrorefining step 3, the bottom light oil (deasphalted oil M3) is passed through a first catalyst layer 12 of a hydrorefining unit providing a plurality of catalyst layers 12, 13, and 13 filled with a hydrorefining catalyst, and a mixed oil comprising the distillate oil M1 and the bottom light oil (deasphalted oil M3) is passed through a downstream catalyst layer 13 and subject to a hydrogenation process.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: April 22, 2008
    Assignee: JGC Corporation
    Inventors: Makoto Inomata, Tsuyoshi Okada, Kozo Imura, Hajime Sasaki
  • Patent number: 7361265
    Abstract: A process for the hydrodesulfurization of cracked olefin streams is described, the process aiming at reducing the sulfur content while at the same time minimizing the hydrogenation degree of said olefins. In order to dilute the added reaction hydrogen, the process makes use of non-reactive compounds such as N2, CH4, C2H6, C3H8, C4H10, Group VIII noble gases as well as admixtures of same in any amount, in gas or vapor phase.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: April 22, 2008
    Assignee: Petroleo Brasileiro S.A.-Petrobras
    Inventors: Rafael M. de Almeida, Jefferson Roberto Gomes
  • Patent number: 7361624
    Abstract: A catalyst for hydrotreating gas oil, which comprises an inorganic oxide support having provided thereon: at least one selected from metals in the Group 6 of the periodic table at from 10 to 30% by weight, at least one selected from metals in the Group 8 of the periodic table at from 1 to 15% by weight, phosphorus at from 1.5 to 6% by weight, and carbon at from 2 to 14% by weight, each in terms of a respective oxide amount based on the catalyst, wherein the catalyst has a specific surface area of from 220 to 300 m2/g, a pore volume of from 0.35 to 0.6 ml/g, and an average pore diameter of about from 65 to 95 ?; a process for producing the catalyst; and a method for hydrotreating gas oil, which comprises subjecting a gas oil fraction to a catalytic reaction in the presence of the catalyst under conditions at a hydrogen partial pressure of from 3 to 8 MPa, a temperature of from 300 to 420° C., and a liquid hourly space velocity of from 0.3 to 5 hr?1.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: April 22, 2008
    Assignee: Cosmo Oil Co., Ltd.
    Inventors: Takashi Fujikawa, Takayuki Osaki, Hiroshi Kimura, Hirofumi Mizuguchi, Minoru Hashimoto, Hiroyasu Tagami, Masahiro Kato
  • Patent number: 7357857
    Abstract: Bitumen extraction done using a process comprising: (a) preparing a bitumen froth comprising particulate mineral solids and hydrocarbons dispersed in aqueous lamella in the form of an emulsion; (b) adding a sufficient amount of a paraffinic solvent to the froth to induce inversion of the emulsion and precipitate asphaltenes from the resultant hydrocarbon phase; (c) mixing the froth and the solvent for a sufficient time to dissolve the solvent into the hydrocarbon phase to precipitate asphaltenes; and (d) subjecting the mixture to gravity or centrifugal separation for a sufficient period to separate substantially all of the water and solids and a substantial portion of the asphaltenes from the bitumen; wherein a separation enhancing additive is present in the process. The separation enhancing additive is a polymeric surfactant that has multiple lipophilic and hydrophilic moieties, which can effect easier handling of asphaltene sludges and less foaming during solvent recovery.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: April 15, 2008
    Assignee: Baker Hughes Incorporated
    Inventors: Paul R. Hart, Edward M. Maharajh
  • Patent number: 7354507
    Abstract: The present invention is generally related towards enhancing the yield and/or cold-flow properties of certain hydrocarbon products, increasing the degree of isomerization in a diesel product and/or increasing the production rate of a diesel product. The embodiments generally include reducing the residence time of lighter hydrocarbon fractions during hydrocracking, thereby decreasing secondary cracking, by various configurations of introducing at least two hydrocarbon feedstreams of different boiling ranges at different entry points in a hydrocracking unit. A method further includes forming a hydrocarbons stream comprising primarily C5+ Fischer-Tropsch hydrocarbon products; fractionating hydrocarbons stream to form at least a wax fraction and an intermediate fraction which serve as separate feedstreams to a hydrocracking unit comprising at least two hydroconversion zones.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: April 8, 2008
    Assignee: ConocoPhillips Company
    Inventors: Sridhar Gopalakrishnan, Vincent H. Melquist, Rafael L. Espinoza, Doug S. Jack, Keith Henry Lawson
  • Patent number: 7351326
    Abstract: Thermal cracking in a riser cracking, closed cyclone, fluidized catalytic cracking process is reduced. A snorkel or flow conduit having an inlet just above the catalyst stripper moves stripper vapor into the closed cyclone. The system preferably operates without a stripper cap, relying on fluid dynamics to isolate stripper vapor from upper parts of the vessel containing the riser outlet. Preferably the snorkel is at least partially supported by, and ideally is inside, the primary cyclone dipleg. Reduced residence time of stripper vapor in the vessel containing the stripper and the closed cyclone system reduces thermal cracking of stripper vapor.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: April 1, 2008
    Inventor: Hartley Owen
  • Patent number: 7347930
    Abstract: A novel process for cracking olefins including contacting a hydrocarbon oil with a catalyst in a riser reactor having multiple reaction zones under cracking reaction conditions; separating reaction products and the catalyst; regenerating at least a part of spent catalyst obtained, contacting a part of the regenerated catalyst with the hydrocarbon in the first reaction zone; contacting the other part of the spent catalyst and/or regenerated catalyst in at least one reaction zone after the first reaction zone with the products obtained in previous reaction zones.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 25, 2008
    Assignees: China Petroleum & Chemical Corporation, Research Institute of Petroleum Processing, Sinopec
    Inventors: Jun Long, Yuxia Zhu, Huiping Tian, Yujian Liu, Zhenyu Chen, Yaoqing Guo, Zhijian Da, Jiushun Zhang, Mingyuan He
  • Patent number: 7347931
    Abstract: The invention relates to a catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that comprise sulfur-containing compounds and olefins. This catalyst comes in a sulfurized form and comprises a substrate that is selected from among the refractory oxides, at least one metal that is selected from the group that consists of the metals of groups VI and VII of the periodic table and carbon, whereby the carbon content is less than or equal to 2.8% by weight. The invention also relates to a method for the production of the catalyst that is described above, as well as a process that uses this catalyst for the selective hydrodesulfurization of hydrocarbon-containing feedstocks that contain sulfur-containing compounds and olefins.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: March 25, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Denis Uzio, Nathalie Marchal-George, Christophe Bouchy, Florent Picard
  • Patent number: 7345211
    Abstract: The invention includes a process for producing synthetic middle distillates and synthetic middle distillates produced therefrom. In one embodiment, the process comprises fractionating a hydrocarbon synthesis product to at least generate a light middle distillate, a heavy middle distillate, and a waxy fraction; thermally cracking the waxy fraction; and isomerizing the heavy middle distillate. A synthetic diesel or blending component is formed by the combination of at least a portion of the light middle distillate; at least a portion or fraction of the thermally cracked product; and at least a portion or fraction of the isomerized product. In some embodiments, the hydrocarbon synthesis product and/or the thermally cracked product may be hydrotreated. In other embodiments, a synthetic middle distillate comprises at least two fractions: a light fraction with not more than 10% branched hydrocarbons, and a heavy fraction with at least 30% branched hydrocarbons.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: March 18, 2008
    Assignee: ConocoPhillips Company
    Inventors: Rafael L. Espinoza, Keith H. Lawson
  • Patent number: 7344634
    Abstract: A reactor apparatus and process for contacting hydrocarbons with catalyst. The reactor apparatus comprises a plurality of tubular reactors each having a first end into which a catalyst is fed and a second end through which the catalyst and product exit the tubular reactor. A catalyst retention zone is provided to contain catalyst and feed catalyst to the tubular reactors. A separation zone is provided to separate the catalyst from products of a reaction conducted in the apparatus. A transport conduit having a first end in fluid communication with the second ends of at least two of the tubular reactors and a second end extending into the separation zone transports product and catalyst to the separation zone. A catalyst return in fluid communication with the separation zone and the catalyst retention zone returns catalyst to the catalyst retention zone.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: March 18, 2008
    Assignee: UOP LLC
    Inventor: David A. Lomas
  • Patent number: 7338593
    Abstract: A drilling fluid for use in high oil viscosity formations containing tar, sand and oil entrained therein. The drilling fluid can be comprised of a polymer in an amount from between 0.05% and 5% by volume, a solvent in an amount from between 1% and 20% by volume and de-emulsifier in an amount from between 0.05% and 10% by volume.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: March 4, 2008
    Assignee: Q'MAX Solutions Inc.
    Inventors: Len Baltoiu, Flori Baltoiu, Brent Warren
  • Patent number: 7326331
    Abstract: The invention concerns a process for producing middle distillates from effluents obtained from the Fischer-Tropsch process, comprising separating a heavy cut with an initial boiling point of 120-200° C., hydrotreating said cut and fractionating the hydrotreated cut to obtain at least one intermediate fraction and at least one fraction that is heavier than the intermediate fraction. The intermediate fraction boils between T1 and T2, T1 being in the range 120-200° C. and T2 being in the range 300-410° C. The heavy and intermediate fractions are treated over a hydrocracking/hydroisomerisation catalyst and the effluents obtained are distilled. The invention also concerns a unit.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: February 5, 2008
    Assignees: Institut Francais du Petrole, AGIP Petroli, ENI S.p.A., Enitechnologies E Uffici Di Via
    Inventors: Eric Benazzi, Christophe Gueret
  • Patent number: 7306713
    Abstract: A delayed coking process for making substantially free-flowing shot coke. A coker feedstock, such as a vacuum residuum, is treated with an additive, such as a elemental sulfur, high surface area substantially metals-free solids, process fines, a mineral acid anhydride and the like. The treated feedstock is then heated to coking temperatures and passed to a coker drum for a time sufficient to allow volatiles to evolve and to produce a substantially free-flowing shot coke.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 11, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Martin L. Gorbaty, Christopher P. Eppig, David T. Ferrughelli, Simon R. Kelemen, Leo D. Brown
  • Patent number: 7303664
    Abstract: A delayed coking process for making substantially free-flowing coke, preferably shot coke. A coker feedstock, such as a vacuum residuum, is heated in a heating zone to coking temperatures then conducted to a coking zone wherein volatiles are collected overhead and coke is formed. A metals-containing additive is added to the feedstock prior to it being heated in the heating zone, prior to its being conducted to the coking zone, or both.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: December 4, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Christopher P. Eppig, Martin L. Gorbaty, Leo D. Brown, Simon R. Kelemen, David T. Ferrughelli, Fritz A. Bernatz
  • Patent number: 7297251
    Abstract: A process for the selective hydrodesulfurization of naphtha streams containing a substantial amount of olefins and organically bound sulfur. The naphtha stream is selectively hydrodesulfurized by passing it through a first reaction zone containing a bed of a first hydrodesulfurization catalyst, then passing the resulting product stream through a second reaction zone containing a bed of a second hydrodesulfurization catalyst, which second hydrodesulfurization catalyst contains a lower level of catalytic metals than the first hydrodesulfurization catalyst.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: November 20, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Edward S. Ellis, Richard A. Demmin, John P. Greeley, Gary B. McVicker, Bruce R. Cook, Garland B. Brignac, Thomas R. Halbert