Patents Examined by John Juba
  • Patent number: 6859315
    Abstract: Disclosed is a polarization beam splitter and a method of producing the same, in which the polarization beam splitter has superior polarization separation efficiency and has small angle dependence. A transparent base material having a polarization separation film, comprising a dielectric multilayered film, is cemented at the cemented surface of the beam splitter, to provide an array-like plane type polarization beam splitter, wherein an incidence angle ?g of light upon the polarization separation film is selected to satisfy a relation ?g>45 deg.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: February 22, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventor: Mitsuharu Sawamura
  • Patent number: 6856459
    Abstract: In one aspect of the invention, a polarization controller includes a first polarization beam splitter operable to receive an input optical signal having an input state of polarization and to separate the signal into a first and a second principal mode of polarization. The polarization controller further includes at least three stages of phase shifters each operable to introduce a phase shift between the first and second principal modes, at least one phase shifter comprising a beam splitter that is shared with at least one other of the phase shifters. The at least three stages of phase shifters include a first stage coupled to the first polarization beam splitter and a last stage coupled to a second polarization beam splitter. The second polarization beam splitter is operable to receive phase shifted copies of the first and second principal modes, and to align the phase shifted copies of the principal modes to an output state of polarization.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: February 15, 2005
    Assignee: Cheetah Omni, LLC
    Inventors: Mohammed N. Islam, Amos Kuditcher
  • Patent number: 6847479
    Abstract: In one aspect of the invention, an apparatus operable to provide optical signal processing includes an inner conductive layer including an at least substantially conductive material and a plurality of at least partially reflective mirror strips disposed outwardly from the inner conductive layer and operable to receive an input optical signal, wherein none of the plurality of strips has a width greater than 40 microns. At least some of the strips are operable to undergo a partial rotation in response to a control signal, the partial rotation resulting in a diffraction of the input optical signal wherein a majority of the diffracted input signal is communicated in one direction.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: January 25, 2005
    Assignee: Cheetah Omni, LLC
    Inventors: Mohammed N. Islam, Amos Kuditcher
  • Patent number: 6847485
    Abstract: A beam homogenizer that minimizes undesired intensity variations at the output plane caused by sharp breaks between facets in previous embodiments. The homogenizer includes a hologram made up of irregularly patterned diffractive fringes. An input beam illuminates at least part of the hologram. The hologram transmits a portion of the input beam onto an output plane. In doing so, the energy of the input beam is spatially redistributed at the output plane into a homogenized output beam having a preselected spatial energy distribution at the output plane. Thus, the illuminated portion of the output plane has a shape predetermined by the designer of the homogenizer.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: January 25, 2005
    Assignee: Digital Optics Corp.
    Inventors: Alan D. Kathman, Michael R. Feldman
  • Patent number: 6844974
    Abstract: In one aspect of the invention, an apparatus operable to provide optical signal processing includes an inner conductive layer including an at least substantially conductive material and a plurality of at least partially reflective mirror strips disposed outwardly from the inner conductive layer and operable to receive an input optical signal, wherein none of the plurality of strips has a width greater than 40 microns. At least some of the strips are operable to undergo a partial rotation in response to a control signal, the partial rotation resulting in a diffraction of the input optical signal wherein a majority of the diffracted input signal is communicated in one direction.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: January 18, 2005
    Assignee: Cheetah Omni, LLC
    Inventors: Mohammed N. Islam, Amos Kuditcher
  • Patent number: 6842273
    Abstract: A hologram recording method using a beam with a very large incident angle includes the steps of generating a sheet beam as the reference beam, and introducing the reference beam into the recording medium at an incident angle of at least 70°. A hologram reproduction apparatus using a holographic reflector includes a light, a holographic reflector, an adjustor, and a hologram. Also, the hologram reproduction method using the hologram reproduction apparatus includes the steps of irradiating a beam emitted from a light source as a reference beam to a holographic reflector, reflecting the reference beam illuminated to the holographic reflector therefrom to generate a reconstructed beam, and allowing the generated reconstructed beam as a reference beam to pass through a hologram to reproduce the hologram. A flat display element apparatus comprises a light source, a holographic reflector, an adjustor, and a flat display element.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: January 11, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jong-man Kim
  • Patent number: 6840637
    Abstract: An automobile exterior rearview mirror system in which adjustments by the vehicle operator to the driver side mirror are used to make automatic adjustments to the passenger side mirror without requiring the operator to make separate, independent adjustment of that mirror. The automatic adjustment is determined using the measured horizontal angle of the driver side mirror along with distance data related to the position of an inboard edge of each of the exterior mirrors.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: January 11, 2005
    Assignee: General Motors Corporation
    Inventor: Jenne-Tai Wang
  • Patent number: 6842286
    Abstract: Optical systems are provided. One such optical system includes an optical source that propagates a source beam of light. A diffracting component is optically coupled to the optical source and is operative to receive the source beam and produce a diffracted beam. A target is located to receive the diffracted beam. Additionally, a compensating system repositions at least one of the optical source, the diffracting component, and the target in response to a detected change in refractive index of a medium through which the diffracted beam propagates so that the diffracted beam continues to be received by the target. Methods and other systems also are provided.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: January 11, 2005
    Assignee: Agilent Technologies, Inc.
    Inventors: John Phillip Ertel, William Richard Trutna, Jr.
  • Patent number: 6839175
    Abstract: An image forming element is disclosed which is easy to manufacture, which can form images easily and at a low cost, and which is stable without fear of environmental problems arising at a time of disposal. Also disclosed is an image forming device which utilizes the image forming element and which can form color images. The image forming element contains at least a film in which rod-shaped bodies are oriented and which reflects incident light as colored interference light. The image forming device is equipped with at least the image forming element, and an ability to irradiate light onto the image forming element. The image forming element reflects, as interference light, the irradiated light. The wavelength of the interference light is 300 to 810 nm.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: January 4, 2005
    Assignee: Fuji Photo Film Co., Ltd.
    Inventor: Shintaro Washizu
  • Patent number: 6839170
    Abstract: An optical system provides reflection-type isolation, and may include variable optical attenuation and/or a tap monitor. The optical system may include an optical isolator with a beam splitter such as a walk-off plate, a focusing element such as a GRIN lens, a combiner comprising two birefringent wedges and a non-reciprocal rotating device such as a Faraday rotator, a compensation device, and a reflector. The Faraday rotator may be variable to provide variable attenuation. The reflector may be a partial reflector to provide a tap monitor. The optical system is configured so that light transmitted into the optical isolator through the input fiber may be transmitted out of the optical isolator through the output fiber, but light transmitted into the optical isolator through the output fiber is generally not transmitted out of the optical isolator through the input fiber.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: January 4, 2005
    Assignee: Oplink Communications, Inc.
    Inventor: Wei-Zhong Li
  • Patent number: 6839169
    Abstract: An optical apparatus and method for selectively transmitting optical signals utilizes an optical component having a controllable optical state to selectively manipulate the optical signals so that transmission of the optical signals through the optical apparatus is controlled. The optical apparatus is configured so that optical signals from a first port of the optical apparatus are transmitted to a second port of the optical apparatus regardless of the optical state of the optical component. The optical apparatus is further configured so that optical signals from the second port are not transmitted to the first port unless the optical component is switched to an active optical state.
    Type: Grant
    Filed: June 17, 2002
    Date of Patent: January 4, 2005
    Assignee: Agilent Technologies, Inc.
    Inventor: Gongjian Hu
  • Patent number: 6836366
    Abstract: A tunable Fabry-Perot filter includes an optical cavity bounded by a stationary reflector and a deformable or movable membrane reflector. A second electrostatic cavity outside of the optical cavity includes a pair of electrodes, one of which is mechanically coupled to the movable membrane reflector. A voltage applied to the electrodes across the electrostatic cavity causes deflection of the membrane, thereby changing the length of the optical cavity and tuning the filter. The filter with the movable membrane can be formed by micro device photolithographic and fabrication processes from a semiconductor material in an integrated device structure. The membrane can include an inner movable membrane portion connected within an outer body portion by a pattern of tethers. The tether pattern can be such that straight or radial tethers connect the inner membrane with the outer body. Alternatively, a tether pattern with tethers arranged in a substantially spiral pattern can be used.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: December 28, 2004
    Assignee: Axsun Technologies, Inc.
    Inventors: Dale C. Flanders, Peter S. Whitney, Michael F. Miller, Stanley R. Shanfield, David B. West, Minh Van Le
  • Patent number: 6836365
    Abstract: A diffractive optical element efficiently converts an input light beam into an output light beam having a specified cross-sectional shape. The diffractive optical element includes a plurality of partial optical elements. The plurality of partial optical elements convert the input light beam to respective partial light beams, each of which has a shape that does not correspond to the specified cross-sectional shape. The sum of the partial light beams matches the shape of the output light beam (i.e., having the specified cross-sectional shape).
    Type: Grant
    Filed: April 14, 2000
    Date of Patent: December 28, 2004
    Assignee: Nikon Corporation
    Inventor: Akihiro Goto
  • Patent number: 6833953
    Abstract: A polarizer for converting incident light beam into a linear polarization light beam has a base plate of a material of low linear expansion coefficient, high thermal conductivity or low photoelastic constant, a birefringent portion formed by arranging minute metal concave tread on a surface of light-emission side of the base plate in stripe, and a protection plate covering the birefringent portion and made of the same material as the base plate, the base plate and the protection plate being bonded by an elastic adhesive on the periphery thereof so that the birefringent portion is sealed and enclosed by the protection plate and the elastic adhesive.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: December 21, 2004
    Assignee: Seiko Epson Corporation
    Inventors: Atsushi Miyazawa, Toshiaki Hashizume
  • Patent number: 6829092
    Abstract: A light modulator includes elongated elements arranged parallel to each other. In a first diffraction mode, the light modulator operates to diffract an incident light into at least two diffraction orders. In a second diffraction mode, the light modulator operates to diffract the incident light into a single diffraction order. Each of the elongated elements comprises a blaze profile, which preferably comprises a reflective stepped profile across a width of each of the elongated elements and which produces an effective blaze at a blaze angle. Alternatively, the blaze profile comprises a reflective surface angled at the blaze angle. Each of selected ones of the elongated elements comprise a first conductive element. The elongated elements produce the first diffraction when a first electrical bias is applied between the first conductive elements and a substrate.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: December 7, 2004
    Assignee: Silicon Light Machines, Inc.
    Inventors: David T. Amm, Jahja Trisnadi, James Hunter, Christopher Gudeman, Dinesh Maheshwari
  • Patent number: 6829066
    Abstract: The present invention provides a hologram screen which is capable of preventing separation, and damage to, a hologram film and which permits the hologram film to be reused easily. The present invention relates to a hologram screen that is comprised of a hologram film having the function of diffracting the light projected from a projector, and first and second transparent members that together sandwich the hologram film from the front and back surfaces thereof so as to cover the same.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: December 7, 2004
    Assignee: Denso Corporation
    Inventors: Kazunori Suzuki, Tooru Matsumoto, Kenichiro Takada
  • Patent number: 6825979
    Abstract: An optical system includes a diffractive optical element having a diffraction grating provided, on a lens surface having a curvature, in a concentric-circles shape rotationally-symmetrical with respect to an optical axis. The sign of the curvature of the lens surface having the diffraction grating provided thereon is the same as the sign of a focal length, at a design wavelength, of a system composed of, in the optical system, a surface disposed nearest to an object side to a surface disposed immediately before the lens surface having the diffraction grating provided thereon, and is different from the sign of the distance from the optical axis to a position where the center ray of an off-axial light flux enters the lens surface having the diffraction grating provided thereon. Further, the apex of an imaginary cone formed by extending a non-effective surface of the diffraction grating is located adjacent to the center of curvature of the lens surface having the diffraction grating provided thereon.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: November 30, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hideki Ogawa
  • Patent number: 6824277
    Abstract: A method for reducing the contamination of at least one optical component (2, 3) contained in the beam guidance space (6) and held by a frame (4, 5) defining the beam guidance space and a corresponding optical beam guidance system. The surfaces of the frame bordering on the beam guidance space are at least partially coated with a degassing barrier layer (7) that preferably does not increase reflectivity. The method and system have use, for example, in lithography irradiation systems working with UV light.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 30, 2004
    Assignee: Carl Zeiss SMT AG
    Inventors: Ansgar Freitag, Ulrich Bingel, Josef Distl, Uwe W. Hamm
  • Patent number: 6822769
    Abstract: A security device includes a holographic optically variable effect generating structure having at least two discrete section. The sections that generate in response to white light illumination an optically variable image having at least two defined graphical elements located at or near an image plane either on or adjacent to the plane of the device. In response to coherent illumination, the sections generate at least two discrete covert images, in the form of indicia, whose image planes are located at a distance away from the real place of the device. The covert images are reconstructed at different angles to a normal to a substrate supporting the device such that the covert images are spatially separated on their image plane, the covert images being non-visible under white light illumnination.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: November 23, 2004
    Assignee: De la Rue International Limited
    Inventors: Kenneth John Drinkwater, Brian William Holmes
  • Patent number: 6819460
    Abstract: Apparatus and methods are disclosed for spatially routing an optical pulse (data pulse) of an electromagnetic radiation and containing a specific address temporal profile and possibly additional data. Routing generally involves a unit of active material that is programmed using one or more input beams or pulses of the electromagnetic radiation providing address (i.e., waveform-discriminating) and directional (i.e., pulse routing) information to the active material. During programming, a spatial-spectral grating is created by optical interference on or in the active material of the input pulses encoding the address and directional information pertinent to the data pulse.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: November 16, 2004
    Assignees: University of Washington, University of Oregon
    Inventors: William R. Babbitt, Thomas W. Mossberg