Patents Examined by John M Zaleskas
  • Patent number: 10954915
    Abstract: Method of bonding a shear web (50) to a wind turbine blade shell (75) and the obtained blade, wherein the shear web (50) comprises a web and a mounting flange (56) oriented transverse to the web (50). The method involves: providing a seal (66, 68) on the mounting flange (56) of the shear web (50) such that when the mounting flange (56) is positioned against the blade shell (75), a cavity (76) is defined by the seal between the mounting flange (56) and the blade shell (75). The air of the cavity (76) is then evacuated and adhesive is injected into the cavity (76). The use of pieces (80) to keep the distance between the mounting flange (56) and the blade shell (75) is preferred.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: March 23, 2021
    Assignee: Vestas Wind Systems A/S
    Inventors: Jonathan Smith, Steve Wardropper
  • Patent number: 10947983
    Abstract: A blower includes a first fan stage with a first housing that has a first plurality of stationary vanes and a first fan that has a first plurality of blades extending radially outwardly from a first hub. The first housing includes a first axial end and a second axial end opposite the first axial end. The blower also includes a second fan stage coupled to the first fan stage. The second fan stage includes a second housing with a second plurality of stationary vanes and a second fan that has a second plurality of blades extending radially outwardly from a second hub. The second fan stage includes a third axial end and a fourth axial end opposite the third axial end. The first hub and/or the second hub has a frustoconical shape that converges from the first axial end toward the fourth axial end.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: March 16, 2021
    Assignee: TTI (Macao Commercial Offshore) Limited
    Inventor: Ronald J. Hoffman
  • Patent number: 10947947
    Abstract: The ignition apparatus includes: an ignition plug; a plurality of high voltage devices each configured to generate the high voltage and apply the high voltage between the first electrode and the second electrode; a leakage current detection device configured to detect a leakage current flowing between the first electrode and the second electrode; and a control device configured to control respective operations of the plurality of high voltage devices and the leakage current detection device. When the control device determines that leakage is present between the first electrode and the second electrode based on the leakage current detected by the leakage current detection device, the control device causes each of the plurality of high voltage devices to apply the high voltage between the first electrode and the second electrode at the same period.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 16, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventor: Kimihiko Tanaya
  • Patent number: 10947912
    Abstract: Various methods of control of combustion knock are disclosed in relation to a spark ignition, internal combustion engine having active tappets, whereby an inlet poppet valve can be moved independently of the usual operating cam. In one embodiment the invention provides for combustion knock to be controlled solely by variation of inlet air charge.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: March 16, 2021
    Assignee: JAGUAR LAND ROVER LIMITED
    Inventor: Ian Edington
  • Patent number: 10941722
    Abstract: In one aspect, a skip fire engine controller is described. The skip fire engine controller includes a skip fire module arranged to determine an operational firing fraction and associated cylinder load for delivering a desired engine output. The skip fire engine controller also includes a firing controller arranged to direct firings in a skip fire manner that delivers the selected operational firing fraction. Various methods, modules, lookup tables and arrangements related to the selection of a suitable operational firing fraction are also described.
    Type: Grant
    Filed: February 7, 2019
    Date of Patent: March 9, 2021
    Assignees: Tula Technology, Inc., GM Global Technology Operations LLC
    Inventors: Mark A. Shost, Louis J. Serrano, Steven E. Carlson, Vijay Srinivasan, Eric J. Defenderfer, Nitish J. Wagh, Randall S. Beikmann, Jinbiao Li, Xin Yuan, Li-Chun Chien
  • Patent number: 10920645
    Abstract: Methods and systems are provided for monitoring a NOx storage capacity of a passive NOx adsorption catalyst (PNA) included in an exhaust gas after-treatment system of an engine. In one example, a method may include, after an engine cold start and prior to an exhaust gas temperature reaching an upper threshold temperature, indicating degradation of the PNA based on an amount of NOx measured downstream of the PNA during a fuel cut event and while the exhaust gas temperature is between a lower threshold temperature and the upper threshold temperature. In this way, degradation of the NOx storage capacity may be inferred based on an amount of NOx released from the PNA and independent of a NOx storage measurement.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: February 16, 2021
    Assignee: Ford Global Technologies, LLC
    Inventors: In Kwang Yoo, Michiel Van Nieuwstadt, Douglas Allen Dobson, Christine Lambert
  • Patent number: 10914250
    Abstract: A purge control method of the present disclosure includes determining whether or not a vehicle quickly decelerates in a driving situation in which a large amount of fuel evaporation gas is discharged, decreasing purge duty for operating a purge control solenoid valve when the controller determines that the vehicle is in a state of quick deceleration, and decreasing a purge flow of the fuel evaporation gas by controlling operation of the purge control solenoid valve by the purge duty.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: February 9, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Wan Ho Kim, Hee Sup Kim
  • Patent number: 10907606
    Abstract: An ignition device according to the present invention includes: an ignition plug, which includes a first electrode, a second electrode, and a dielectric body arranged between the electrodes; an AC power supply configured to generate an AC voltage to be applied between the electrodes; a thermal plasma detection portion configured to output a thermal plasma occurrence signal when thermal plasma has occurred between the electrodes; and an application time period determination portion configured to determine an application time period for the AC voltage during one cycle of the internal combustion engine in advance before the application, and when the thermal plasma occurrence signal is received while the AC voltage is being applied based on the application time period, change the application time period so as to shorten the application time period.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: February 2, 2021
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Takahiro Inoue, Taichiro Tamida, Ryota Asakura, Tomokazu Sakashita, Takashi Hashimoto
  • Patent number: 10907550
    Abstract: This control apparatus of an engine includes an engine, a state quantity setting device, an injector, a spark plug, and a controller. The controller outputs a control signal to the spark plug at a predetermined ignition timing such that, after air-fuel mixture is ignited and combustion is started, unburned air-fuel mixture is combusted by autoignition, and the controller advances an ignition timing when the temperature before start of compression in a combustion chamber is to be reduced.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: February 2, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Tomonori Urushihara
  • Patent number: 10907532
    Abstract: A pre-chamber spark plug that includes a shell. Additionally, the pre-chamber spark plug includes an insulator disposed within the shell. In a particular embodiment, a center electrode has a first portion surrounded by the insulator, and a second portion that extends from the insulator into a pre-chamber. The pre-chamber defined by the shell. In a further embodiment, a ground electrode is attached to the insulator. In particular embodiments, the ground electrode is tubular in shape and includes an inner spark surface ring spaced in surrounding relation to the center electrode to create a spark gap, an outer ring attached to the shell, and a plurality of rounded spokes connecting the inner and outer rings. In a particular embodiment, the ground and center electrodes accommodate attachment of precious metal alloys to increase electrode surface life. In another embodiment the ground electrode and insulator is coaxial to the center electrode.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: February 2, 2021
    Assignee: Woodward. Inc.
    Inventors: Domenico Chiera, David C. Petruska, Gregory James Hampson
  • Patent number: 10895208
    Abstract: A control system for a compression-ignition engine is provided, which includes an engine configured to combust a mixture gas inside a combustion chamber by compression ignition, a fuel injector attached to the engine, a state function adjusting part attached to the engine and configured to adjust at least introduction of fresh air into the combustion chamber, a three-way catalyst provided in an exhaust passage of the engine, a wall temperature acquiring part configured to acquire a parameter related to a temperature of a wall of the combustion chamber, and a controller. A swirl flow is generated inside the combustion chamber to circle along the wall. When the wall temperature of the combustion chamber is below a given wall temperature, the controller sets an air-fuel ratio of the mixture gas substantially to a stoichiometric air-fuel ratio so as to remain within a purification window of the three-way catalyst.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: January 19, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Atsushi Inoue, Masanari Sueoka, Kota Matsumoto, Keiji Maruyama
  • Patent number: 10895223
    Abstract: A vapor impermeable solenoid includes an outer housing fabricated from a vapor impermeable material configured to prevent fuel vapor molecules from passing therethrough; windings configured to generate a magnetic flux when energized, a flux collector configured to direct the magnetic flux, a pole piece, and a magnetic armature disposed within the housing and coupled to a seal configured to selectively seal a passage that allows fuel vapor to pass to a purge canister. The magnetic armature is configured to move from a first position to a second position when an electric current is applied to the windings.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: January 19, 2021
    Assignee: Eaton Corporation
    Inventor: Robert Andrew Dayton
  • Patent number: 10882632
    Abstract: A system for maintaining a constant temperature of an engine in an unmanned aerial system with an autothrottle limiting device comprises an autopilot for issuing a throttle command, an autothrottle limiting device for automatically limiting an upper limit of the throttle command issued by the autopilot, and a rotary engine for feeding an internal temperature of the engine back to the autothrottle limiting device. The system is applicable to all kinds of unmanned aerial systems employing an air-cooling rotary engine, uses the existing autopilot of the unmanned aerial system without modification, and improves the reliability and life of the engine.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: January 5, 2021
    Assignee: KOREAN AIR LINES CO., LTD.
    Inventors: Seung Kie Choi, Shin Je Cho, Sang Hun Lee
  • Patent number: 10871072
    Abstract: The present application provides a steam turbine system. The steam turbine system may include a rotor, a high pressure section positioned about the rotor, one or more high pressure extraction conduits extending from the high pressure section, a high pressure control valve positioned on each of the high pressure extraction conduits, an intermediate pressure section positioned about the rotor, one or more intermediate pressure extraction conduits extending from the intermediate pressure section, an intermediate pressure control valve positioned on each of the intermediate pressure extraction conduits, and a controller in communication with the high pressure control valves and the intermediate pressure control valves and operable to selectively adjust respective positions of the high pressure control valves and the intermediate pressure control valves to balance thrust acting on the rotor.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: December 22, 2020
    Assignee: General Electric Company
    Inventor: Mahendra Singh Mehra
  • Patent number: 10865696
    Abstract: The cooling device according to the present invention includes an electric water pump for circulating cooling water through an internal combustion engine of a vehicle, and controls the discharge flow rate of the electric water pump as follows. Until the cooling water temperature. TW reaches a warm-up completion determination temperature, the cooling device increases the discharge flow rate along with an increase of the cooling water temperature TW. After the cooling water temperature TW reaches the warm-up completion determination temperature, the cooling device controls the discharge flow rate so as to bring the combustion chamber wall temperature TCYL toward a target temperature. Thereby, the cooling device can warm up the internal combustion engine more efficiently, and improve the combustion performance of the internal combustion engine after the completion of warm-up.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: December 15, 2020
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Atsushi Murai, Shigeyuki Sakaguchi, Yuichi Toyama
  • Patent number: 10859033
    Abstract: A vehicle internal combustion piston and method of construction thereof are provided. The piston includes piston body extending along a central longitudinal axis, having an upper combustion wall forming an upper combustion surface and an undercrown surface opposite the upper combustion surface. An annular ring belt region depends from the upper combustion surface, a pair of skirt panels depend from the ring belt region, and a pair of pin bosses depend from the undercrown surface to provide laterally spaced pin bores aligned along a pin bore axis for receipt of a wrist pin. The undercrown surface forms a central undercrown surface, and a portion of either an open outer cooling gallery, a sealed outer cooling gallery, or an outer galleryless region, wherein an insulating coating is applied to at least one of the portions of the undercrown surface.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: December 8, 2020
    Assignee: Tenneco Inc.
    Inventors: Eduardo Matsuo, Warran Boyd Lineton
  • Patent number: 10858987
    Abstract: Methods and systems are provided for controlling a boosted engine system, having a turbocharger and a charge air cooler, to limit overheating of a compressor outlet. In one example, a method includes predicting an engine torque profile based on current and future engine operating conditions. The method then models a compressor outlet temperature profile and reduces engine torque output to limit overheating of the compressor outlet.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: December 8, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Mario Anthony Santillo, John Erik Mikael Hellstrom, Hamid-Reza Ossareh, Baitao Xiao
  • Patent number: 10857875
    Abstract: Determining the thermodynamic state of fuel includes opening the venting connection to release the tank pressure while monitoring the derivative pressure (dP/dt), closing the venting connection when one of the following conditions is met, the derivative pressure (dP/dt) is lower than a predetermined threshold DP1 or the opening time ?t1 reaches a predetermined value, if the closing of the venting connection occurs when the opening time ?t1 reaches the said predetermined value, determining that the fuel is boiling and aborting the method if the closing of the venting connection occurs when the derivative pressure (dP/dt) is lower than the said threshold DP1, measuring an initial tank pressure at the closing of the venting connection, measuring the final tank pressure after a closure time ?t2, calculating the pressure variation (?P/?t2), comparing the pressure variation (?P/?t2) with a first threshold PV1, if the pressure is lower then aborting the method.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: December 8, 2020
    Assignee: Plastic Omnium Advanced Innovation and Research
    Inventors: Antoine Chaussinand, Jules-Joseph Van Schaftingen, David Hill, Paul Daniel Reuther
  • Patent number: 10851736
    Abstract: A purge valve for an EVAP system has a chamber including an inlet conduit for receiving fuel vapors from an EVAP canister, a first outlet conduit to the engine for the fuel vapors, and a second outlet conduit to the engine for the fuel vapors. Energizing the purge valve at a first current actuates a first armature from a closed position to an open position to open a first opening and allow fuel vapors to flow through the first outlet conduit to the engine, without actuating the second armature from a closed position. Energizing the purge valve at a second current that is greater than the first current actuates a second armature from a closed position to an open position to open the second opening and allow fuel vapors to flow through the second outlet conduit to the engine while maintaining the first armature in the fully open position.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: December 1, 2020
    Assignees: DENSO International America, Inc., DENSO CORPORATION
    Inventors: Michael Ozika, Daniel McGrail
  • Patent number: 10851750
    Abstract: The invention proposes an electromagnetically actuatable inlet valve (24) for a high-pressure pump, in particular of a fuel-injection system. The inlet valve (24) has a valve member (34) which can be moved between and open position and a closed position. An electromagnetic actuator (60) is provided, by means of which the valve member (34) can be moved, wherein the electromagnetic actuator (60) has an armature (68) which acts at least indirectly on the valve member (34), a magnet coil (64) which surrounds the armature (68), and a magnetic core (66) against which the armature (68) comes to rest at least indirectly when current is applied to the magnet coil (64), wherein the armature (68) is movably guided in a carrier element (78), and the carrier element (78) and the magnetic core (66) are interconnected.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 1, 2020
    Assignee: Robert Bosch GmbH
    Inventor: Tobias Landenberger