Patents Examined by John Q. Nguyen
  • Patent number: 9026332
    Abstract: The invention relates to a method of controlling a vehicle brake adapted to exert a braking force in response to an actuation setpoint, in which: from a braking setpoint including low frequency components and high frequency components, a nominal actuation setpoint is determined for the brake actuator that takes account of all of the components of the braking setpoint; from the same braking setpoint, and from a measurement of the torque developed by the brake, a correction for the nominal actuation setpoint is determined, the correction taking account only of low frequency variations in the braking setpoint, the correction being adapted to take account of current or future operating conditions of at least said brake or of brakes subjected to the same braking setpoint; and the correction is added to the nominal setpoint.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: May 5, 2015
    Assignee: Messier-Bugatti-Dowty
    Inventor: Dominique Onfroy
  • Patent number: 9026334
    Abstract: A vehicle attitude control system includes a control unit that calculates a front wheel control amount and a rear wheel control amount on the basis of a front-side slip angle at a front axle of front wheels and a rear-side slip angle at a rear axle of rear wheels, and that controls the front wheels on the basis of the front wheel control amount and controls the rear wheels on the basis of the rear wheel control amount at the same time.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: May 5, 2015
    Assignee: JTEKT Corporation
    Inventors: Shuuji Kimura, Masayasu Higashi
  • Patent number: 9026326
    Abstract: When a vehicle speed is equal to or higher than a first vehicle speed threshold value or an uphill gradient is lower than a first gradient threshold value and uphill start control is cancelled, if a state where the vehicle speed is lower than a second vehicle speed threshold value and the uphill gradient is equal to or higher than a second gradient threshold value continues for a first set time, uphill start control is executed. When the vehicle speed is decreased after being once increased within a range where the vehicle speed is lower than the first vehicle speed threshold value and uphill start control is cancelled, if a state where the vehicle speed is lower than the second vehicle speed threshold value and the uphill gradient is equal to or higher than the second gradient threshold value continues for a second set time, the uphill start control is executed.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: May 5, 2015
    Assignee: JTEKT Corporation
    Inventors: Tomohiro Nozu, Ryohei Shigeta
  • Patent number: 9026350
    Abstract: A Center of Gravity Determination Apparatus for Fixed Wing Aerial Systems (NC#102046) comprising a lifting support structure designed to support a fixed wing aerial system (FWAS) wherein the lifting support structure allows the FWAS to freely pitch, a 3-D translation mechanism, operatively coupled to the lifting support structure, designed to precisely position the lifting support structure in the x-axis, y-axis and z-axis, a base support structure, operatively coupled to the 3-D translation mechanism, designed to support other components, at least one resting support structure, operatively coupled to the base support structure, designed to support the FWAS when the lifting support structure is not providing support to the FWAS and wherein the at least one resting support structure is designed to prevent the FWAS from pitching, rolling, or yawing when the lifting support structure is not providing support to the FWAS.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 5, 2015
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Bradley Tecumseh Knaus
  • Patent number: 9026319
    Abstract: When a blade load is reduced from a value greater than or equal to a first set load value to a value less than the first set load value, a blade control device is configured to set a virtual designed surface to be closer to a blade than a designed surface is, and is configured to allow the blade to pivot above the virtual designed surface.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: May 5, 2015
    Assignee: Komatsu Ltd.
    Inventors: Kazuhiko Hayashi, Kenjiro Shimada, Kenji Okamoto
  • Patent number: 9026297
    Abstract: A controller is connected to a pressure sensor. The controller controls a regulator of a sub-pump in accordance with a pressure signal from the pressure sensor, detects an output of a main pump, and controls an output of an electric motor according to the output of the main pump based on a table stored beforehand.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: May 5, 2015
    Assignee: Kayaba Industry Co., Ltd.
    Inventors: Haruhiko Kawasaki, Masahiro Egawa
  • Patent number: 9026322
    Abstract: A speed change controlling apparatus in which the mode of driving force transmission is depends upon the roll angle of a vehicle body. When a roll angle is within a range from a second roll angle, which corresponds to a full bank state, to a first roll angle, speed change operation is carried out by soft speed change control in which variation of the driving force with respect to time is smaller than that by normal speed change control. If the roll angle is within another range from the first roll angle to a third roll angle, then normal speed change is carried out and if the roll angle is within a further range from an uprightly standing state to the third roll angle, then speed change operation is executed by direct speed change. When the roll angle is greater than the second roll angle, speed change is inhibited.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: May 5, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Kojima, Masaki Nakagawara, Takashi Ozeki, Yoshiaki Tsukada
  • Patent number: 9026356
    Abstract: A vehicle navigation method comprises determining a present location of a host vehicle, including a road on which the host vehicle is traveling, determining a navigation route based on a destination and the present location of the vehicle, and determining a next navigation maneuver based on the navigation route and the present location of the host vehicle. The method further comprises capturing road information pertaining to the road, determining a present lane of the road in which the host vehicle is traveling based on the captured road information, determining a traffic condition on the road, and operating a computer to modify the next navigation maneuver based on the navigation route, the present lane and the traffic condition.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: May 5, 2015
    Assignee: Nissan North America, Inc.
    Inventor: Adrian K. Tan
  • Patent number: 9020673
    Abstract: A hybrid vehicle includes an internal combustion engine (22), a motor (MG2), and a secondary battery (50), and travels in an electric-powered travel mode and in a hybrid travel mode. In the hybrid vehicle, an execution travel mode is set to one of two travel modes including an electric-powered travel priority mode where the hybrid vehicle travels with priority being given to the electric-powered travel mode over the hybrid travel mode, and a hybrid travel priority mode where the hybrid vehicle travels with priority being given to the hybrid travel mode over the electric-powered travel mode. When the execution travel mode is switched while the internal combustion engine (22) is being operated, the internal combustion engine (22) and the motor (MG2) are controlled so that charging/discharging electric power for charging or discharging the secondary battery (50) is gradually changed and the hybrid vehicle travels in the switched execution travel mode (S750 to S800).
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: April 28, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Masaya Yamamoto, Masashi Funada
  • Patent number: 9020668
    Abstract: The present invention provides an apparatus and method for air conditioning a vehicle interior using a battery charge control of an electric vehicle, which can improve the cooling/heating performance by setting a start-up time of the electric vehicle and supplying heat generated from a battery during charge and its latent heat to the vehicle interior during initial start-up of the vehicle.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: April 28, 2015
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: June Kyu Park, Hee Sang Park, Hun Soo Kim, Jung Hwan Yun, Hyun Kim, Hee Jun Jeong
  • Patent number: 9020693
    Abstract: A hydraulic shovel calibration device includes an input unit, a first calibration computation unit, and a second calibration computation unit. The input unit is a unit where working point position information and antenna position information are input. The working point position information indicates coordinates of the working point at a plurality of positions which are measured by an external measurement device. The antenna position information indicates coordinates of the position of the antenna which are measured by the external measurement device. The first calibration computation unit computes calibration values of the work implement parameters by numerical analysis based on the working point position information input into the input unit. The second calibration computation unit calibrates the antenna parameters based on the antenna position information input into the input unit.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 28, 2015
    Assignee: Komatsu Ltd.
    Inventor: Masanobu Seki
  • Patent number: 9020716
    Abstract: A control device for a vehicle drive device that includes a drive source that outputs a drive force for running and an automatic transmission that has multiple speeds, the control device includes: a blipping control device that performs blipping control in which an output torque of the drive source is changed irrespective of an accelerator operation when a manual downshift of the automatic transmission is performed, and that changes a timing to perform next blipping control in a learning manner on the basis of an undershoot amount of a turbine speed at start of shifting of the automatic transmission.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Keisuke Ota, Hitoshi Matsunaga
  • Patent number: 9020726
    Abstract: A torque management system and method is described by which the torque provided by an engine can be controlled based on a mass of the vehicle and, if available, instantaneous and/or predictive slope information. Also, in some modes of operation, torque can be controlled based on speed limit information for upcoming road segments to be traveled by a vehicle. In addition to controlling the maximum allowable torque, optionally the minimum allowable torque can also be controlled to prevent inadvertent decelerations of the vehicle. A driver/operator can optionally override the torque control and the history of override requests can optionally be used to adjust overrides of the system. A plurality of torque control approach sub-methods can be made available with the appropriate sub-mode being selected depending, for example, upon the extent of the available information.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: April 28, 2015
    Assignee: Daimler Trucks North America LLC
    Inventors: Elmar Boeckenhoff, Dieter Reckels, Derek James Rotz, Shivkumar Duraiswamy
  • Patent number: 9020689
    Abstract: A system and methods for real-time model based vehicle structural anomaly detection are disclosed. A real-time measurement corresponding to a location on a vehicle structure during an operation of the vehicle is received, and the real-time measurement is compared to expected operation data for the location to provide a modeling error signal. A statistical significance of the modeling error signal to provide an error significance is calculated, and a persistence of the error significance is determined. A structural anomaly is indicated, if the persistence exceeds a persistence threshold value.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: April 28, 2015
    Assignee: The Boeing Company
    Inventors: Timothy A. Smith, James M. Urnes, Sr., Eric Y. Reichenbach
  • Patent number: 9015093
    Abstract: A method of processing information is provided. The method involves receiving a message; processing the message with a trained artificial neural network based processor, having at least one set of outputs which represent information in a non-arbitrary organization of actions based on an architecture of the artificial neural network based processor and the training; representing as a noise vector at least one data pattern in the message which is incompletely represented in the non-arbitrary organization of actions; analyzing the noise vector distinctly from the trained artificial neural network; searching at least one database; and generating an output in dependence on said analyzing and said searching.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: April 21, 2015
    Inventor: Michael Lamport Commons
  • Patent number: 9014918
    Abstract: Systems and methods for monitoring health of one or more subsystems of a vehicle system are disclosed. At least one sensor can be operatively coupled to a vehicle subsystem having an operational signature and a control system is coupled to the at least one sensor. Using information provided by the at least one sensor, the control system is structured to generate a reference signature of the subsystem during a learning phase and an operational signature of the subsystem subsequent to the learning phase. Systems and methods for identifying the particular subsystem exhibiting degraded performance are also disclosed.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: April 21, 2015
    Assignee: Cummins Inc.
    Inventors: Eric L. Hagen, Richard S. Fox, Nkemjika Ibekwe, Malcolm L. Smith
  • Patent number: 9014877
    Abstract: An aircraft with aerofoils including a main wing and a control flap that includes an adjustment flap. The aircraft includes an actuator for the control flap, as well as a sensor device for acquiring the position of the control flap, an arrangement of flow-influencing devices for influencing the fluid that flows over a segment of the main wing, and flow-state sensor devices for measuring the flow state. The aircraft includes a flight control device connected to the sensor device for acquiring the position of the control flap and to the flow-state sensor devices, and connected to the actuator and flow-influencing devices for transmitting actuating commands, and a flight-state sensor device connected to the flight control device for transmitting flight states. The flight control device includes a function that selects the flow-influencing devices that are operated for optimizing local lift coefficients on the aerofoil, depending on the flight state.
    Type: Grant
    Filed: June 16, 2012
    Date of Patent: April 21, 2015
    Assignee: Airbus Operations GmbH
    Inventors: Burkhard Gölling, Frank Haucke, Matthias Bauer, Wolfgang Nitsche, Inken Peltzer
  • Patent number: 9014920
    Abstract: A system and method uses a combination of sensors and electronics to reliably remind forgetful or negligent caregivers when they have or are about to leave one or more helpless occupants inside a vehicle, in addition to functioning as a traditional car alarm. One or more detectors sense the presence of the helpless occupant and the departure of the driver, at which time an ascending level of alarms are executed.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 21, 2015
    Inventors: Ricardo Torres, Hansel Rios-Torres
  • Patent number: 9008915
    Abstract: A method for operating steerable rear wheels of a vehicle includes detecting a rear wheel steering angle of at least one of the steerable rear wheels, and detecting a first vehicular condition. The method further includes determining a weighted rear steering angle value based at least in part upon the rear wheel steering angle and the first vehicular condition, and controlling the steerable rear wheels in response to the weighted rear steering angle value.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: April 14, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Xiaodi Kang, Christopher J. Cymbal, David A. Thompson
  • Patent number: 9008917
    Abstract: A passive entry passive start (PEPS) system is provided for performing at least one PEPS function with respect to a vehicle as an end device (e.g., smart phone or key fob, etc.) approaches the vehicle and comes within range for authorization. The vehicle includes a plurality of sensors and a central module. The central module is communicatively coupled to the end device and to the sensors via short-range wireless connections. The central module can determine, based on signal strength information provided from the sensors or the end device, whether the end device is within range for authorization. When the end device is determined to be within range for authorization, the central module can control performance of at least one PEPS function at the vehicle.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Neeraj R. Gautama, Amanda J. Kalhous, Robert A. Hrabak, Norman J. Weigert