Patents Examined by Johnny Hoang
  • Patent number: 9234470
    Abstract: An idling stop device is mounted on a vehicle. A microcomputer has an idling stop function of automatically stopping an engine of the vehicle when a predetermined stop condition is established and automatically starting the engine when a predetermined start condition is established during the stopping of the engine. A detecting unit detects that a power voltage of the microcomputer, which is obtained by dropping a voltage of a battery of the vehicle is lower than a minimal operation voltage of the microcomputer. A storage unit stores voltage decrease information irrespective of a state of the microcomputer if the power voltage is lower than the minimal operation voltage. A power control unit stops supply of power to some of electrical loads to which power is supplied from the battery when the engine is started, if the voltage decrease information is stored in the storage unit.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: January 12, 2016
    Assignee: FUJITSU TEN LIMITED
    Inventors: Ryoh Izumoto, Motoki Komiya, Yuuichiroh Shimizu, Yoshinori Shibachi
  • Patent number: 9065416
    Abstract: A method for controlling a volume of an infotainment unit of a vehicle having an engine having a stop/start capability during operation of the vehicle includes the steps of obtaining information pertaining to a condition of the engine, and controlling the volume based at least in part upon the condition.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: June 23, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mike M. McDonald, William C. Albertson
  • Patent number: 8892336
    Abstract: An actuating device for providing a physical output quantity includes: a control element for providing the physical output quantity; an actuator unit triggering the control element according to a triggering variable; and a communication unit receiving the triggering variable, which communication unit sends actuator information which contains an indication about a correlation between the provided physical output quantity of the actuating device and the triggering variable.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: November 18, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Alex Grossmann, Ralf Buehrle, Thomas Klotzbuecher
  • Patent number: 8825345
    Abstract: A control system for a motor vehicle is disclosed. The control system determines if a motor vehicle is going to stop according to information about a preceding vehicle. The control system may use information about the vehicle speed of the motor vehicle, a following distance between the motor vehicle and a preceding vehicle and preceding vehicle deceleration information. When the control system determines that the motor vehicle is going to stop, the motor vehicle shuts down the engine prior to the vehicle stopping in order to improve fuel efficiency and reduce emissions.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: September 2, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventor: Nathaniel Ellis
  • Patent number: 8800531
    Abstract: A compression brake system of an internal combustion engine includes a mechanical system for coupling a camshaft to a brake actuator assembly. The mechanical system includes a stationary housing defining an aperture and a lifter is slidably disposed in the aperture. A resilient element is disposed between the housing and the shoulder and configured to bias the lifter toward the camshaft. The mechanical system is dedicated to compression braking, and therefore the camshaft may have a lobe optimized for braking.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: August 12, 2014
    Assignee: Caterpillar Inc.
    Inventors: Stephen M. Wiley, John S. Pipis, Jr.
  • Patent number: 8776764
    Abstract: Methods and systems are provided for operating an engine fuel system including a low pressure pump and a high pressure pump. During conditions when direct injection is not requested, a fuel rail pressure is maintained by the low pressure pump and fuel is port injected. Further, a stroke amount of the high pressure pump is adjusted to maintain an outlet pressure of the high pressure pump just below the fuel rail pressure. By maintaining fuel flow within the high pressure pump when high pressure pump operation is not required, and without flowing fuel from the high pressure pump outlet into the fuel rail, the high pressure pump may be cooled and lubricated without affecting the fuel rail pressure.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: July 15, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Joseph Basmaji, Gopichandra Surnilla, Ross Dykstra Pursifull
  • Patent number: 8775051
    Abstract: An apparatus is used for diagnosing the temperature state of a catalyst converter. The catalyst converter includes a catalyst for cleaning an emission, and a conductive carrier for carrying the catalyst. The conductive carrier is energized for temperature rise of the catalyst, and the conductive carrier has a characteristic in which resistance drops with temperature increase. In the apparatus, a first obtaining unit obtains a first parameter having a first correlation with supply power to the conductive carrier for energization of the conductive carrier. A second obtaining unit obtains a second parameter having a second correlation with a temperature of the conductive carrier. A diagnosing unit diagnoses the temperature state of the conductive carrier based on a comparison between the first parameter and the second parameter.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 8, 2014
    Assignee: Denso Corporation
    Inventors: Taro Hirai, Noriaki Ikemoto, Takeshi Harada, Naoyuki Kamiya, Hisashi Iida
  • Patent number: 8763586
    Abstract: An engine system includes a throttle valve configured to variably open and close to selectively restrict a volume of air flow. The engine system also includes a supercharger comprising an air inlet, an air outlet, a rotatable drive shaft and rotors associated with the drive shaft, wherein the supercharger is sized to have a flow rate that substantially prevents backwards leaking of air flow. The engine system further includes a combustion engine comprising combustion chambers and an associated rotatable crank shaft and a continuously variable transmission (CVT) configured to variably transfer rotational energy between the drive shaft and the crank shaft.
    Type: Grant
    Filed: May 27, 2013
    Date of Patent: July 1, 2014
    Assignee: Eaton Corporation
    Inventors: Daniel Robert Ouwenga, Karen E. Bevan
  • Patent number: 8752528
    Abstract: A fuel injection device for smooth discharge of a gas accumulated therein comprising a fuel pump, a solenoid valve for injecting pressurized fuel into the intake passage of an engine, a high-pressure fuel passage extending from the fuel pump to the solenoid valve and has a medially positioned constant-pressure chamber, and a fuel return passage (38) connected to a fuel return pipe, with the fuel return passage extending from the constant- pressure chamber and having a medially positioned priming pump. The constant-pressure chamber is configured with the top wall in the upper space thereof disposed above the opening of the high-pressure fuel passage opposite the solenoid valve, the fuel return passage opens into the upper space at a position above the opening of the high-pressure fuel passage, and the gas accumulating in the constant-pressure chamber is discharged from the upper space toward the fuel tank via the fuel return passage.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: June 17, 2014
    Assignee: Zama Japan Kabushiki Kaisha
    Inventors: Takumi Nonaka, Hideki Watanabe
  • Patent number: 8752527
    Abstract: This disclosure provides a fuel line assembly for use with an internal combustion engine, an internal combustion engine including such as fuel line assembly, and a method for providing leak containment and detection in a fuel system, each of which include a double-walled fuel line including a high pressure fuel line component. The double-walled fuel line includes a high pressure fuel line, a jacket surrounding the high pressure fuel line, and a low pressure passage between the high pressure fuel line and the jacket. A fuel line nut includes a main body that houses a portion of the high pressure fuel line, and a first end portion supporting an enlarged end portion of the high pressure fuel line protruding from the first end portion. A second end portion of the fuel line nut sealingly connects to the jacket to extend the low pressure passage into an area between the main body and the housed high pressure fuel line.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: June 17, 2014
    Assignee: Cummins Intellectual Properties, Inc.
    Inventors: Joseph Worthington, Thomas O. Hahn, Vijay Sonawane, Prasad Khedekar, Dave Richter, Josh Knight
  • Patent number: 8746212
    Abstract: A method and a device for operating an internal combustion engine having a mass-flow line are provided, which allow the actual charge to be adapted to the setpoint charge of the internal combustion engine at a desired dynamic. A mass flow is supplied to the internal combustion engine via the mass-flow line. A setpoint value is specified for a characteristic quantity of the mass flow to the internal combustion engine. The setpoint value of the characteristic quantity of the mass flow is formed starting from a balance of the mass flow flowing into the mass flow line and the mass flow discharged from the mass flow line according to a predefined time characteristic.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: June 10, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Sabine Wegener, Lutz Reuschenbach, Patrick Menold, Kristina Milos, Michael Drung
  • Patent number: 8733318
    Abstract: An internal combustion engine having an intake channel that is divided by a partition into an air duct and a mixture duct. The partition has a connecting opening that at least at full throttle of the internal combustion engine is substantially closed. A main fuel opening opens out into the mixture duct. At least one further fuel opening is provided that opens out into the mixture duct at a first distance relative to the wall of the intake channel and at a second distance relative to the partition.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: May 27, 2014
    Assignee: Andreas Stihl AG & Co. KG
    Inventors: Florian Hoche, Michael Raffenberg, Andreas Hägele
  • Patent number: 8738273
    Abstract: An EGR system control method of an engine may include calculating a target mass flux ({dot over (m)}egrd) of EGR gas flowing an EGR line, calculating an effective flowing area (EFA) of an EGR valve disposed on the EGR line, calculating an EGR flow sensitivity by dividing the target mass flux with the effective flowing area, and controlling a real opening rate of the EGR valve by applying the EGR flow sensitivity to a target opening rate of the EGR valve. Accordingly, a gain value is varied on a real time according to an effective flowing area of the EGR valve and a target mass flux of EGR gas such that real opening rate of an EGR valve is accurately and precisely controlled.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: May 27, 2014
    Assignees: Hyundai Motor Company, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)
    Inventors: Kihoon Nam, Myoungho Sunwoo, Minkwang Lee, Yeongseop Park, Byounggul Oh
  • Patent number: 8731806
    Abstract: Various systems and methods are described for an exhaust gas sensor coupled to an exhaust system of an engine. One example method comprises, during selected engine fueling conditions, alternating between applying different voltages to the sensor; and identifying an amount of alcohol in fuel injected to the engine based on sensor outputs at the different voltages.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 20, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Richard E. Soltis, Gopichandra Surnilla, Carolyn Parks Hubbard, Kenneth John Behr, Timothy Joseph Clark
  • Patent number: 8720422
    Abstract: The invention relates to an internal combustion heat engine, with at least one combustion chamber for intake gases comprising a mixture consisting of a fuel such as petrol and an oxidizer such as air, connected to an intake circuit (A) for the intake of said intake gases into the chamber and an exhaust circuit (B) for the exhaust of the burnt gases outside the chamber, an exhaust gas recirculation circuit (C, D) connecting the exhaust circuit to the intake circuit, and a control system for the exhaust gas recirculation. The control system is arranged so that the exhaust gas recirculation is implemented for at least one operation point defined by an engine speed and a torque output by the engine, for which the output torque is higher than 50% of the maximum engine torque. The invention can be used for operating the engine with optimal stoichiometric mixture and ignition advance without the occurrence of rattling.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: May 13, 2014
    Assignee: Valco Systemes de Controle Moteur
    Inventors: Sebastien Potteau, Philippe Lutz, Damien Fournigault
  • Patent number: 8701626
    Abstract: A gasoline direct injection engine that has an injector directly injecting fuel into a combustion chamber, a spark plug, an intake valve, and an exhaust valve and generates power by reciprocating a piston in a cylinder, may include a cavity formed on a piston head and returning some flow of the fuel injected from the injector to the intake valve, and a channel formed around the cavity.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: April 22, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Young Sam Gu, Hyun Soo Shim, Tae Sun Kim
  • Patent number: 8694227
    Abstract: An air-fuel ratio control apparatus for an internal-combustion engine includes an air-fuel-ratio sensor, a control-input calculator, an air-fuel-ratio controller, and a gain calculator. The air-fuel-ratio sensor is disposed in an exhaust channel in the internal-combustion engine and is configured to detect an air-fuel ratio in exhaust gas. The control-input calculator is configured to calculate a control input in accordance with an output value of the air-fuel-ratio sensor. The air-fuel-ratio controller is configured to perform a feedback control using the control input such that the output value of the air-fuel-ratio sensor reaches a target value. The gain calculator is configured to calculate a gain in accordance with the output value when the output value is leaner than the target value. The gain is to be used in calculating the control input.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: April 8, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Michinori Tani, Atsuhiro Miyauchi, Kenichi Maeda, Seiji Watanabe, Soichiro Goto
  • Patent number: 8694230
    Abstract: Fuel systems and methods for cold environments which includes a fuel pump having at least one solenoid coil in an unlaminated magnetic circuit, the fuel pump being disposed in a fuel tank, and a pump drive and pulsing system, the pump drive providing pump actuation current to the solenoid coil and the pulsing system providing short current pulses to the solenoid coil to cause Eddy current losses in the unlaminated magnetic circuit. The method includes, before cranking the engine for starting the engine, providing short, successive current pulses to the solenoid coil to cause eddy current heating in the unlaminated circuit and heating of the fuel in and around the fuel pump, turning on the fuel pump to commence fuel flow to the engine, and cranking the engine for starting after the fuel pump has been turned on. Various features are disclosed.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 8, 2014
    Assignee: Sturman Digital Systems, LLC
    Inventor: Oded Eddie Sturman
  • Patent number: 8688354
    Abstract: A fuel injection control apparatus of the invention includes: a temperature acquisition portion that estimates the present temperature of a catalyst and the convergence temperature of the catalyst; an increase value calculation portion that calculates a base OT increase value that is an increase value for the fuel injection amount that a fuel injection valve provided in an internal combustion engine needs to inject, on the basis of the present temperature and the convergence temperature of the catalyst estimated by the temperature acquisition portion; a correction portion that calculates an OT increase correction-reflected value by correcting the base OT increase value on the basis of the present temperature and the convergence temperature if the present temperature is lower than the convergence temperature; and an increase value determination portion that selects one of the base OT increase value and the OT increase correction-reflected value as the OT increase value for the fuel injection amount that the fu
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: April 1, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kachi, Shinya Kondo
  • Patent number: 8677976
    Abstract: A high pressure fuel pump (20) that pressurizes and supplies a fuel by driving a cam (21) such that a plunger (23) reciprocates, the high pressure fuel pump (20) comprises a lifter guide (25) having a guide hole (25A), a lifter (22) that is disposed between the cam (21) and the plunger (23) and is fitted into the guide hole (25A) to be free to slide so as to transmit a driving force from the cam (21) to the plunger (23), an oil collection portion (27) that is provided above the guide hole (25A) so as to surround a periphery of the lifter (22), and stores a lubricating oil for lubricating a sliding portion between the lifter (22) and the guide hole (25A), and an oil supply passage (25C) for supplying the lubricating oil to the oil collection portion (27). As a result, a reduction in a lubricating performance with regard to the lifter (22) in a position away from an opening portion of the oil supply passage (25C) is suppressed.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 25, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Noriyoshi Maruyama, Tomoyuki Koike