Patents Examined by Jonathan Cwern
  • Patent number: 10398408
    Abstract: An examination portion information obtaining apparatus includes an opening to which a portion to be examined of the examinee is inserted, a cup-shaped maintaining member which accommodates at least part of the portion to be examined inserted through the opening, an acoustic wave detector which receives acoustic waves from the portion to be examined, and a movement mechanism which moves the maintaining member relative to the portion to be examined inserted through the opening.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: September 3, 2019
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takaaki Nakabayashi
  • Patent number: 10398512
    Abstract: A method for detecting deformations and errors and/or for generating position data of an instrument (1) with at least one first section (2) with at least one first sensor (4) and at least one second section (3) with at least one second sensor (5), wherein the method encompasses metrologically determining the position of the first and second sensor (4, 5). The method encompasses mathematically determining the position of the second sensor (5) with regard to the first section (2), preferably in at least two ways. Further, an apparatus for executing the method is specified.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: September 3, 2019
    Inventor: Dirk Mucha
  • Patent number: 10376150
    Abstract: An imaging interface for diffuse optical tomography of breast includes a plurality of concentric rings. Each concentric ring can include a plurality of optical input/output apertures arranged on a radially inner surface thereof. The rings can have different inner and outer diameters from each other and can be arranged in a stacked configuration. The rings can translate independently of each other along a central axis of the stack. During imaging the breast is inserted into an inner region of the stacked rings. The rings can be translated such that the optical input/output apertures are brought into touch contact (i.e., non-compressing contact) with the surface of the breast, so as to accommodate different size breasts. The rings may be translated such that the spacing between adjacent rings is increased for large breasts and reduced for smaller breasts. Rings may be removed or additional rings added to further accommodate additional breast sizes.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: August 13, 2019
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Andreas H. Hielscher, Molly L. Flexman, Keith Yeager
  • Patent number: 10368946
    Abstract: A method for determining the location, in a coordinate system, of a target position for an invasive medical procedure on a patient. An entry mark that defines the coordinate system and indicates an entry position for the procedure is affixed to the patient. A site marker, which can be identified in a radioscopy image, is fixed in a known relative location in the coordinate system. At least two 2D radioscopy images of the patient, which both depict the respective site marker and the target position, are recorded from different recording directions. The location of the target position in the coordinate system is determined from the representation of the target position and from the representation of the site marker in the 2D radioscopy images and from the relative location of the site marker in the coordinate system.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: August 6, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rainer Graumann, Gerhard Kleinszig, Martin Ringholz
  • Patent number: 10366255
    Abstract: In order to easily prepare a medical diagnostic analysis of a patient, a barcode scanning device (100) is configured for determining a physiological quantity of the patient. The barcode scanning device (100) comprises a light receiving unit (108) configured for receiving light (219) reflected from a surface to be sensed of the patient, and a signal processing unit (218) configured for determining the physiological quantity of the patient based on the received light (219).
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: July 30, 2019
    Assignee: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Heinz Otto Kurzenberger
  • Patent number: 10362963
    Abstract: A system and method for navigating a medical device within a body are provided. The system includes an electronic control unit configured to determine operating positions for electrical and magnetic position sensors on the medical device within corresponding first and second coordinate systems. The first and second coordinate systems are defined by an electric field based positioning system and a magnetic field based positioning system, respectively. The magnetic position sensor is disposed proximate the electrical position sensor. The ECU is further configured to apply a mapping function correlating the operating positions which generates a mapped position for the magnetic position sensor in the first coordinate system responsive to the operating position of the magnetic position sensor in the second coordinate system. The ECU determines an adjusted operating position for the electrical position sensor in the first coordinate system responsive to the mapped position of the magnetic position sensor.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: July 30, 2019
    Assignee: ST. JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC.
    Inventors: Lev A. Koyrakh, Vasily Vylkov, Eric S. Olson
  • Patent number: 10349964
    Abstract: An ultrasound system has an ultrasound transducer having a transducer housing and a horn provided at the distal end of the transducer housing, an ultrasound transmission member, a sonic connector that is connected to the horn and the proximal end of the ultrasound transmission member, and a catheter knob having a proximal end that is coupled to the distal end of the transducer housing. The catheter knob has a proximal bore that houses the sonic connector. The system also includes a nesting piece that is retained inside the proximal bore of the catheter knob. The nesting piece can be moved from a first position where the sonic connector is received inside the nesting piece to a second position where the sonic connector is separated from the nesting piece when ultrasound energy is being propagated through the ultrasound transmission member.
    Type: Grant
    Filed: September 2, 2016
    Date of Patent: July 16, 2019
    Assignee: Flowcardia, Inc.
    Inventors: Henry Nita, Martinos Tran
  • Patent number: 10342516
    Abstract: Various embodiments include systems and methods for gain auto-correction. Automatic gain optimization or correction may be applied in an ultrasound system, during an automatic gain mode. The automatic gain optimization or correction may comprise automatic time gain compensation (TGC) and/or lateral gain compensation (LGC) optimization or correction. The applying of the gain optimization or correction may comprise determining an optimal gain, such as based on processing input ultrasound images; determining, based on the optimal gain, settings for a plurality of user controls of the ultrasound system (e.g., slides, knobs, etc.), corresponding to the optimal gain; and providing feedback to a user of the ultrasound system, relating to (e.g., showing) the settings for the plurality of user controls that correspond to the optimal gain. The plurality of user controls may be adjustable manually and automatically. The user controls may be physical or virtual.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: July 9, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stefan Denk, Daniel John Buckton
  • Patent number: 10342498
    Abstract: A cannula and method include a shaft portion having a proximal end, a distal end, a longitudinal axis and a lumen extending from the proximal end to the oppositely disposed distal end along the longitudinal axis. A hub is attached to the proximal end of the shaft portion and includes a transverse portion, which extends transversely relative to the longitudinal axis of the shaft portion. An opaque marker is disposed on the transverse portion at a position corresponding to an expanded size of an expandable element such that the opaque marker indicates the expanded size in an imaging system image.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 9, 2019
    Inventors: Michael A. Smith, Samuel Lee, Emily Benson
  • Patent number: 10338029
    Abstract: A system and method for monitoring a subject are presented. The system includes a sensing device including at least one magnetic source to generate a magnetic field and an array of magnetic sensors disposed within the magnetic field. The sensor array obtains a plurality of magnetic field measurements at a plurality of locations along a vessel carrying a fluid including one or more magnetic particles. Further, the system includes a processing subsystem communicatively coupled to the sensing device, where the processing subsystem determines variations in the measurements caused by magnetization-relaxation of the magnetic particles based on a coupled model that defines behavior of the fluid in the varying magnetic field based on principles of magnetization-relaxation, bulk motion of the magnetic particles towards a determined gradient of the magnetic field, magnetostatics, and conservation of momentum. The processing subsystem estimates values of one or more desired parameters based on the determined variations.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: July 2, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Kaustubh Ravindra Nagarkar, Jeffrey Michael Ashe, William Hullinger Huber, Aaron Judy Couture, Ashraf Said Atalla
  • Patent number: 10335114
    Abstract: A method of providing an ultrasound image via an ultrasound apparatus including a medical tool that is inserted into an object, the method includes: obtaining a plurality of steering images corresponding to a plurality of steering angles, selecting one of the plurality of steering images based on brightness information of the medical tool in each of the plurality of steering images, detecting a steering angle corresponding to the selected steering image, obtaining an ultrasound image including the medical tool by using the detected steering angle, and displaying the obtained ultrasound image on a screen.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: July 2, 2019
    Assignee: SAMSUNG MEDISON CO., LTD.
    Inventors: Sung-chan Park, Jung-ho Kim
  • Patent number: 10327804
    Abstract: An indicator element of a percutaneous needle guide for a medical scanning device includes a pointer for pointing to a percutaneous needle entry site on an epidermis of a body, when the guide is attached to the device and the device is positioned over the epidermis for scanning. A user may orient and insert a needle into the entry site according to the direction of the pointer, by just viewing the pointer, without the needle being constrained by the pointer. The guide may include an adjustment mechanism for moving the indicator element with respect to the device, when the guide is attached to the device; the adjustment mechanism moves the indicator element, without changing an orientation of the pointer, in a direction approximately parallel to a plane that is approximately tangent with an apex of the device transducer surface and approximately perpendicular to a longitudinal axis of the device.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: June 25, 2019
    Assignee: MEDTRONIC, INC.
    Inventors: Eric H. Bonde, Kevin M. Cristadoro, Yelena G. Tropsha
  • Patent number: 10327645
    Abstract: Techniques for imaging are disclosed. In one example, the disclosure is directed to a sensor positioned on an elongate optical fiber. The sensor comprises a plurality of blazed Bragg gratings configured to generate acoustic energy for imaging a region in response to a first optical signal, an interferometer configured to sense acoustic energy from the region and to provide a responsive second optical signal, the interferometer including a first fiber Bragg grating (FBG) and a second FBG, wherein the plurality of blazed Bragg gratings are positioned between the first and second FBGs.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: June 25, 2019
    Assignee: Vascular Imaging Corporation
    Inventors: Howard Neil Rourke, Michael J. Eberle, Diana Margaret Tasker
  • Patent number: 10314561
    Abstract: A tomographic image generation device acquires ultrasonic wave data and interference light data to be used for generating a tomographic image for one line in respective rotation positions of the transmitting and receiving unit by performing sampling respectively on an ultrasonic wave echo signal and an interference light signal obtained by driving the ultrasonic wave transmitting and receiving unit and the optical transmitting and receiving unit while rotating the transmitting and receiving unit. Then, the tomographic image generation device controls operation timing of the acquisition means so that a sampling period for performing sampling on the interference light signal for one line and a predetermined period from driving of the ultrasonic wave transmitting and receiving unit for ultrasonic wave oscillation are not overlapped.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: June 11, 2019
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Ema Itoh, Isao Mori
  • Patent number: 10307078
    Abstract: A method, including inserting a catheter having at least one electrode into a chamber of a body organ of a patient and recording at a sequence of times respective sets of currents between the at least one electrode and a plurality of patches positioned on skin of the patient. The method further includes, while recording the sets of currents, acquiring x-ray images of the at least one electrode, and determining locations of the catheter from the images. A relation is derived between the locations and the respective sets of currents based on the sets of currents and the images. The method also includes recording subsequent sets of currents between the at least one electrode and the patches, and determining, based on the relation, subsequent locations of the catheter in response to the subsequent set of currents.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: June 4, 2019
    Assignee: BIOSENSE WEBSTER (ISRAEL) LTD
    Inventors: Meir Bar-Tal, Doron Moshe Ludwin
  • Patent number: 10285604
    Abstract: According to one embodiment, a medical image diagnostic apparatus includes a storage unit, a blood flow information generation unit and a blood flow inhibition index generation unit. The storage unit stores volume data or data of a series of images regarding an organ of an object. The blood flow information generation unit generates, based on the volume data or the data of the series of images, first blood flow information of a first region and second blood flow information of a second region different from the first region. The blood flow inhibition index generation unit generates, based on the first blood flow information and the second blood flow information, a blood flow inhibition index representing a degree of inhibition of a blood flow in a blood vessel regarding the first region or the second region.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: May 14, 2019
    Assignees: Fujita Health University, Toshiba Medical Systems Corporation
    Inventors: Takashi Ichihara, Takuya Sakaguchi
  • Patent number: 10271821
    Abstract: A method of ultrasound imaging and a corresponding ultrasound scanner are provided. The method includes the steps of receiving an echo signal induced by an ultrasonic plane wave transmission from a transducer of an ultrasound scanner, resampling the echo signal in time domain and/or space domain, performing a spectrum zooming on a band of interest (BOI) of an input signal, performing a Fourier transform on a result of the spectrum zooming, and generating an ultrasound image based on a result of the Fourier transform. The input signal is generated based on the resampling of the echo signal.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: April 30, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Chung-Lien Ho, Yi-Ting Wang, Ren-Jr Chen, Chu-Yu Huang
  • Patent number: 10244972
    Abstract: A fluorescence observation device includes an oxygen saturation calculation section, a reference region setting section, a region-of-interest setting section, a normalized fluorescence intensity calculation section, and a fluorescent image generation section. The oxygen saturation calculation section calculates the oxygen saturation of the subject for each pixel. The reference region setting section sets a reference region of the subject based on the oxygen saturation. The region-of-interest setting section sets a region of interest of the subject.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: April 2, 2019
    Assignee: FUJIFILM Corporation
    Inventor: Shunsuke Tominaga
  • Patent number: 10231613
    Abstract: The present technology relates generally to devices and methods for intravascular evaluation of blood vessels. Many embodiments of the technology relate to the intravascular evaluation of blood vessels before, during and after creation of autologous valves. In one embodiment, for example, the present technology is directed to a method comprising intravascularly delivering a delivery catheter to a target location adjacent a vessel wall and engaging the vessel wall along a portion of the delivery catheter. The method can further include imaging a cross-section of a dissection pouch using a visualization element, and determining a physical parameter of the vessel wall based on the image of the cross-section of the dissection pouch.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: March 19, 2019
    Assignee: InterVene, Inc.
    Inventors: Fletcher T. Wilson, Zachary J. Malchano
  • Patent number: 10213109
    Abstract: A configuration is provided for firmly fixing a transmitting and receiving unit for IVUS and a transmitting and receiving unit for OCT in a probe of an imaging apparatus for diagnosis in which space saving is achieved. The probe includes a cylindrical housing in which an ultrasonic wave transmitting and receiving unit is arranged on a distal side and a light transmitting and receiving unit is arranged on a proximal side. Two signal wires are connected to the ultrasonic wave transmitting and receiving unit and which extend toward the proximal side substantially parallel to each other and which are arranged in the housing so as to cause the distance between the two signal wires to be smaller than a width of a ball lens portion of the light transmitting and receiving unit.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: February 26, 2019
    Assignee: TERUMO KABUSHIKI KAISHA
    Inventors: Ema Itoh, Kazuyuki Takahashi