Patents Examined by Jonathan D Armstrong
  • Patent number: 10317528
    Abstract: A proximity sensing function is implemented using a collection of core independent peripherals (CIPs) in a microcontroller without software overhead to the central processor during operation thereof. A pulse width modulation (PWM) peripheral generates a high frequency drive signal that is on for a short duration to an ultrasonic transmitting transducer. An ultrasonic receiving transducer receives reflected ultrasonic pulses during an integration time window. The received pulses are detected and integrated into a voltage value. The integrated voltage value is compared to a prior voltage value average, and if different, generates a proximity sense signal of an object. Direction, distance and speed of the object may also be determined from the voltage values.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: June 11, 2019
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Keith Curtis, Kristine Angelica Sumague, Anthony Stram
  • Patent number: 10310081
    Abstract: A system for using ultrasound to detect distance on mobile platform and methods for making and using same. The system includes an ultrasound transceiver that can transmit and/or receive ultrasound waves and determine distance from an object of interest using a time-of-flight of the ultrasound wave. The system is adapted to reduce noise by using a dynamic model of the mobile platform to set constraints on the possible location of a received ultrasound echo. A linear, constant-speed dynamic model can be used to set constraints. The system can further reduce noise by packetizing a received ultrasound waveform and filtering out noise according to height and width of the packets. The system likewise can remove dead zones in the ultrasound transceiver by subtracting an aftershock waveform from the received waveform. The systems and methods are suitable for ultrasound distance detection on any type of mobile platform, including unmanned aerial vehicles.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: June 4, 2019
    Assignee: SZ DJI TECHNOLOGY CO., LTD.
    Inventors: Jiebin Xie, Litian Zhang, Wei Ren
  • Patent number: 10310111
    Abstract: Apparatus, computer instructions and method for separating up-going and down-going wave fields (U, D) from seismic data recorded within or beneath a body of water, or in general below the surface of the earth. The method includes a step of receiving seismic data (Po, Zo) recorded in the time-space domain with seismic recorders distributed on a first datum, wherein the first datum is non-flat; a step of establishing a mathematical relation between transformed seismic data (P, Z) and the up-going and down-going wave fields (U, D) on a second planar datum; and a step of solving with an inversion procedure, run on a processor, the mathematical relation to obtain the up-going and down-going wave fields (U, D) for the second datum. The second datum is different from the first datum.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: June 4, 2019
    Assignee: CGG SERVICES SAS
    Inventor: Sergio Grion
  • Patent number: 10310124
    Abstract: A floating vessel based system generates a multidimensional seismic data set for a target area. The floating vessel based system includes a seismic source proximate to a floating vessel, providing a plurality of seismic energy pulses through water to the target area forming a plurality of reflected seismic energy pulses, a non-stationary seismic node configured for being towed from the floating vessel using at least one rope through the water, a non-stationary seismic node, and a second processor with second data storage on the floating vessel. The second data storage instructs the second processor to receive, each digital data series, combines the digital data series for all non-stationary seismic nodes utilized, and automatically generates multidimensional seismic data set for the target area.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: June 4, 2019
    Inventors: Lawrence Scott, Edward Majzlik
  • Patent number: 10302751
    Abstract: The disclosed invention is a computer-implemented process that identifies and extracts distinctive data characteristics from a linear array of time-sequenced A-mode ultrasonic backscatter amplitude data, where such distinctive data characteristics are indicative of material identity. The disclosed invention uses such distinctive data characteristics to create a plausible inference about whether or not an investigatory material belongs to a specific class of ultrasonically permeable materials of known classification.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: May 28, 2019
    Inventor: Russell H. Dewey
  • Patent number: 10293374
    Abstract: Provided is a capacitive transducer including an element including a plurality of cells supported such that a vibrating membrane including one of a pair of electrodes formed with an gap inbetween is capable of vibration, wherein a distance between a pair of electrodes of a cell in an end portion of the element is greater than that between a pair of electrodes of a cell in a middle portion of the element.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: May 21, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kazutoshi Torashima, Kenichi Nagae
  • Patent number: 10269340
    Abstract: An ultrasound beamformer may include an array of ultrasound transducer elements. Multiple signal transmitters may each generate an ultrasound signal that is different from the ultrasound signal generated by each of the others. The number of ultrasound transmitters may be no more than half the number of ultrasound transducer elements. Each multiplexer may have multiple signal inputs, each connected to a different one of the ultrasound signals; an output that drives the ultrasound transducer element; and a control input that controls which of the ultrasound signals at the signal inputs to the multiplexer is delivered to the output of the multiplexer based on a control signal. The controller may generate the control signals with a collective configuration that causes the array of ultrasound transducer elements to steer an/or focus a beam of ultrasound energy in one or more different ways at one or more different times.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: April 23, 2019
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventor: Jesse Yen
  • Patent number: 10261167
    Abstract: A method and apparatus for a co-located Radio Frequency Identification (RFID) device and ultrasonic device includes an RFID reader loop antenna element oriented parallel to a reflector panel. An ultrasonic emitter is disposed through an aperture in the reflector panel with a horn that extends through the loop element. The horn can serve as a mounting structure for the antenna element. A diameter of the aperture is less than one-quarter wavelength of an operating frequency of the RFID reader loop antenna element. The aperture is located in the reflector panel near a minimum E-field area of the RFID reader loop antenna element.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: April 16, 2019
    Assignee: Symbol Technologies, LLC
    Inventors: David E. Bellows, Rehan K. Jaffri, Sean D Marvel
  • Patent number: 10222494
    Abstract: Controller and method for adapting a frequency sweep for a vibro-acoustic source element that is configured to generate acoustic waves during a seismic survey. The method includes driving a seismic source element to generate a current frequency sweep; recording seismic data with plural seismic sensors in response to the current frequency sweep; selecting, during the seismic survey, a data subset of the seismic data, wherein the data subset has a size less than 10% of the seismic data; calculating with a processing device an attribute based on the data subset; and calculating a new frequency sweep based on the attribute.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: March 5, 2019
    Assignee: CGG SERVICES SAS
    Inventors: Benoit Teyssandier, Robert Dowle, Laurent Ruet, John Sallas
  • Patent number: 10217045
    Abstract: Techniques, systems, and devices are described for implementing for implementing computation devices and artificial neurons based on nanoelectromechanical (NEMS) systems. In one aspect, a nanoelectromechanical system (NEMS) based computing element includes: a substrate; two electrodes configured as a first beam structure and a second beam structure positioned in close proximity with each other without contact, wherein the first beam structure is fixed to the substrate and the second beam structure is attached to the substrate while being free to bend under electrostatic force. The first beam structure is kept at a constant voltage while the other voltage varies based on an input signal applied to the NEMS based computing element.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: February 26, 2019
    Assignee: Cornell University
    Inventors: Amit Lal, Serhan Ardanuc, Jason T. Hoople, Justin C. Kuo
  • Patent number: 10203243
    Abstract: The present disclosure provides a system, method, and apparatus for compressing and extracting features. The method involves transmitting at least one ultrasound signal into an object at a plurality of different locations on the object. Each of the locations is denoted by an x location and a y location. The method further involves receiving at least one waveform response signal. Also, the method involves generating a three-dimensional (3D) data cube with an X dimension, a Y dimension, and a time dimension. At least one waveform response signal is stored within the 3D data cube at the x location and the y location that is associated with the waveform response signal(s). Further, the method involves transforming at least one waveform response signal of the 3D data cube to produce at least one transformed signal.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: February 12, 2019
    Assignee: The Boeing Company
    Inventors: Yuan-Jye Wu, Hong H. Tat
  • Patent number: 10200794
    Abstract: Detection of audible and ultrasonic signals is provided by a microelectromechanical microphone. The detection range of ultrasonic signals can be configurable. In certain embodiments, the microelectromechanical microphone can include a band-pass sigma-delta modulator that can generate a digital signal representative of an ultrasonic signal. In addition or in other embodiments, the microelectromechanical microphone can include an event detector device that can determine that an ultrasonic event has occurred and, in response, can send a control signal to an external device. Detection of ultrasonic signals can be utilized in vehicular applications and/or gesture recognition.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 5, 2019
    Assignee: INVENSENSE, INC.
    Inventor: Omid Oliaei
  • Patent number: 10189049
    Abstract: A side lobe in a capacitive transducer is reduced. Provided is a capacitive transducer including an element including a plurality of cells supported such that a vibrating membrane including one of a pair of electrodes formed with an gap between the electrodes is capable of vibration, wherein a distance between cells in an end portion of the element is greater than a distance between cells in a middle portion of the element.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 29, 2019
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kazutoshi Torashima, Kenichi Nagae
  • Patent number: 10162070
    Abstract: Acquired data that corresponds at least in part to a target structure is received. One or more subsets of a first type are formed from the acquired data. The one or more subsets of the first type are converted to one or more subsets of a second, different type.
    Type: Grant
    Filed: November 1, 2012
    Date of Patent: December 25, 2018
    Assignee: WESTERNGECO L.L.C.
    Inventors: David Nichols, Everett Mobley, Jr.
  • Patent number: 10120093
    Abstract: Methods for in-situ reservoir investigation by borehole seismic methods are provided using receiver(s) and a downhole source. The downhole source may be a microseismic event, and may be located relative to the receiver(s) in any configuration. The downhole source may also be a controlled source that is positioned in a reverse vertical seismic profile (RVSP) geometry with respect to the receiver(s). The methods may involve locating the receiver(s) in a first well (which may have any orientation, including vertical or horizontal), and locating the source in a monitoring well (which may have any orientation, including vertical or horizontal), such that the source in the monitoring well is positioned at a greater depth in the formation than the receivers in the first well.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: November 6, 2018
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Joel Herve Le Calvez, Stewart Thomas Taylor
  • Patent number: 10114119
    Abstract: Provided are a sonar system, transducer assembly, and method for imaging an underwater environment. The sonar system may include a housing having a transducer array defining first and second rows of transducer elements positioned at a predetermined distance. The first row of transducer elements may include at least first and second transducer elements configured to convert sound energy into first and second sonar return data. The second row of transducer elements may include at least third and fourth transducer elements configured to convert sound energy into third and fourth sonar return data. A sonar signal processor may be configured to process the first and second sonar return data and third and fourth sonar return data to generate respective first and second array sonar return data corresponding to a plurality of first and second receive beams and generate 3D sonar return data by correlating the angles associated with the receive beams.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: October 30, 2018
    Assignee: NAVICO HOLDING AS
    Inventors: Ronald Joe Horner, Alan Lee Proctor
  • Patent number: 10098613
    Abstract: An image processing module includes an input unit, a weight operator, and a synthesizer. The input unit is configured to receive a plurality of input signals of a plurality of channels. The weight operator is configured to calculate at least one weight to be applied to each channel based on at least one converted signal. The at least one converted signal is acquired by converting at least one input signal among the plurality of input signals of each channel, or by converting a synthesized input signal of the plurality of input signals of each channel. The synthesizer is configured to synthesize the plurality of input signals of the plurality of channels using the weight.
    Type: Grant
    Filed: July 10, 2014
    Date of Patent: October 16, 2018
    Assignees: SAMSUNG ELECTRONICS CO., LTD., Industry Academic Cooperation Foundation, Hallym University
    Inventors: Kyu Hong Kim, Sung Chan Park, Su Hyun Park, Joo Young Kang, Jung Ho Kim, Moo Ho Bae
  • Patent number: 10088566
    Abstract: An object is measured to record the relative surface coordinates. Then, a portion of the object “the front side” immersed in a fluid is imaged by directing a sonar pulse at the object and recording sonar signals reflected from the object with a sonar imaging array. Then, the recorded relative surface coordinates are iteratively fit to coordinates calculated from the sonar image. Thereafter, the coordinates of the surface of the “backside” of the object that is not observable in the sonar image are known, and a computer generated image of the backside is stitched to sonar image so that the object can be viewed from a plurality of viewpoints separated from the sonar imaging array.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 2, 2018
    Assignee: Coda Octopus Group Inc.
    Inventor: Martyn Sloss
  • Patent number: 10073174
    Abstract: A sensing apparatus comprising an ultrasound transceiver for transmitting ultrasound signals into a sample and receiving a resultant ultrasound reflection signal from the sample, a detector for processing signals received by the transceiver by comparing the received signal against a reference signal to generate a response signal, the response signal comprising values as a function of time that represent the strength of the match between the received signal and the reference signal at the respective time; and a driver capable of generating a plurality of pre-defined pulse templates.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: September 11, 2018
    Assignee: DolphiTech AS
    Inventors: Eskil Skoglund, Arnt-Børre Salberg, Tore Baarstad
  • Patent number: 10064605
    Abstract: The quality of ping-based ultrasound imaging is dependent on the accuracy of information describing the precise acoustic position of transmitting and receiving transducer elements. Improving the quality of transducer element position data can substantially improve the quality of ping-based ultrasound images, particularly those obtained using a multiple aperture ultrasound imaging probe, i.e., a probe with a total aperture greater than any anticipated maximum coherent aperture width. Various systems and methods for calibrating element position data for a probe are described.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: September 4, 2018
    Assignee: MAUI IMAGING, INC.
    Inventors: Artem Belevich, Josef R. Call, Bruce R. Ritzi, Nathan W. Osborn