Patents Examined by Jonathan G Cwern
  • Patent number: 7883468
    Abstract: An ultrasound medical system has an end effector including a medical ultrasound transducer and an acoustic coupling medium. The acoustic coupling medium has a transducer-proximal surface and a transducer-distal surface. The medical ultrasound transducer is positioned to emit medical ultrasound through the acoustic coupling medium from the transducer-proximal surface to the transducer-distal surface. The end effector is adapted to change a property (such as the shape and/or the temperature) of the acoustic coupling medium during emission, and/or between emissions, of medical ultrasound from the medical ultrasound transducer during a medical procedure on a patient. In one example, such changes are used to change the focus and/or beam angle of the emitted ultrasound during the medical procedure.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: February 8, 2011
    Assignee: Ethicon Endo-Surgery, Inc.
    Inventors: Inder Raj S. Makin, T. Douglas Mast, Michael H. Slayton, Peter G. Barthe, Jeffrey D. Messerly, Waseem Faidi, Megan M. Runk
  • Patent number: 7881768
    Abstract: Methods are disclosed for assessing the condition of a cartilage in a joint, particularly in a human knee. The methods include converting an image such as an MRI to a three dimensional map of the cartilage. The cartilage map can be correlated to a movement pattern of the joint to assess the affect of movement on cartilage wear. Changes in the thickness of cartilage over time can be determined so that therapies can be provided. Information on thickness of cartilage and curvature of cartilage or subchondral bone can be used to plan therapy. Information on movement pattern can be used to plan therapy.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: February 1, 2011
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Philipp Lang, Daniel Steines
  • Patent number: 7869856
    Abstract: The present invention relates to an encapsulated medical imaging device (1) and method for imaging the gastroin-testinal tract in patients using optical scanning technologies.
    Type: Grant
    Filed: January 10, 2001
    Date of Patent: January 11, 2011
    Assignees: Engel Research & Development (1993) Ltd., L.Z. Ashlang Finance Ltd.
    Inventor: Moshe Refael
  • Patent number: 7862509
    Abstract: Methods and systems for measuring transducer movement are provided. For example, free-hand scanning for three-dimensional imaging is provided. An optical sensor within the transducer measures motion along the skin surface similar to measuring movement of a personal computer mouse with an optical sensor. Alternatively or additionally, the transducer is tilted at an angle other than perpendicular to the skin surface generally towards or away from the direction in which the transducer is translated. The transducer is then translated while maintaining the angle. Motion to or from the transducer is measured, and a component of the motion measured while the transducer is maintained at an angle is parallel to the direction of translation. The component of motion is angle corrected and used to determine a distance of travel.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: January 4, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul H. Jones, Paul D. Freiburger, Craig B. Robinson, Stephen P. Czenszak, Christian Deforge
  • Patent number: 7853311
    Abstract: A targeting device for providing a series of coordinates/lines within a sheet of sterile, flexible material with an adherent surface which is applied to the skin (after suitable surgical preparation). The sheet is non-porous and may have a topical antiseptic on the side which is applied to the skin. A fluoroscope or roentgenographic image of the portion of the body to which the adherent film is applied will show the underlying skeletal and radiopaque elements as well as the overlying surgical grid. Once the targeting device is applied, the coordinates on the grid lines are clearly visible on the surface of the skin as well as on the fluoroscopic or radiographic image and by knowing the direction of the fluoroscopic or radiographic beam, the operator will be able to thereby correlate a specific locus on the skin with an underlying skeletal element or other underlying radiopaque structure.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: December 14, 2010
    Assignee: 3M Innovative Properties Company
    Inventor: Lawrence Xavier Webb
  • Patent number: 7846097
    Abstract: Methods and systems for measuring transducer movement are provided. For example, free-hand scanning for three-dimensional imaging is provided. An optical sensor within the transducer measures motion along the skin surface similar to measuring movement of a personal computer mouse with an optical sensor. Alternatively or additionally, the transducer is tilted at an angle other than perpendicular to the skin surface generally towards or away from the direction in which the transducer is translated. The transducer is then translated while maintaining the angle. Motion to or from the transducer is measured, and a component of the motion measured while the transducer is maintained at an angle is parallel to the direction of translation. The component of motion is angle corrected and used to determine a distance of travel.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: December 7, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul H. Jones, Paul D. Freiburger, Craig B. Robinson, Stephen P. Czenszak, Christian Deforge
  • Patent number: 7837626
    Abstract: Contrast agents are manipulated with acoustic radiation force while ultrasound imaging. Continuous waves for acoustic radiation force are transmitted. Substantially simultaneously, pulsed waves for imaging are transmitted. Low mechanical index continuous and pulsed waves may be used to increase binding efficiency of drug containing contrast agents with the tissue for treatment. Various techniques may be used to minimize the effect of the continuous waves on imaging with the pulsed waves. The acoustic radiation force may be transmitted with an amplitude profile and/or unfocused or defocused.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: November 23, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: James E. Chomas, Ismayil M. Guracar, Patrick J. Phillips, John D. Marshall
  • Patent number: 7819826
    Abstract: A long-term implantable ultrasound therapy system and method is provided that provides directional, focused ultrasound to localized regions of tissue within body joints, such as spinal joints. An ultrasound emitter or transducer is delivered to a location within the body associated with the joint and heats the target region of tissue associated with the joint from the location. Such locations for ultrasound transducer placement may include for example in or around the intervertebral discs, or the bony structures such as vertebral bodies or posterior vertebral elements such as facet joints. Various modes of operation provide for selective, controlled heating at different temperature ranges to provide different intended results in the target tissue, which ranges are significantly effected by pre-stressed tissues such as in-vivo intervertebral discs. In particular, treatments above 70 degrees C., and in particular 75 degrees C.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: October 26, 2010
    Assignee: The Regents of the University of California
    Inventors: Chris J. Diederich, Jeffrey C. Lotz, Will Nau, David S. Bradford, John P. O'Banion, James C. Peacock, III
  • Patent number: 7815572
    Abstract: An ultrasonic diagnostic imaging system and method are described by which a user can delineate a region of interest (122, 128) in a colorflow Doppler image. The ultrasound system processes the Doppler pixel information of the region of interest (122, 128) to produce a spectrogram illustrating motion at the region of interest (122, 128) as a function of time. In a preferred embodiment the Doppler pixel information is processed by histograms to produce the spectrogram data.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: October 19, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Thanasis Loupas
  • Patent number: 7785261
    Abstract: The invention relates to a catheter device, with a position sensor system, for treatment of a partial or complete vessel blockage under image monitoring, with the catheter device featuring a treatment catheter of a vessel blockage, especially by removal or destruction of plaque and/or expansion of the vessel, which is embodied as an integrated unit, especially as a combination catheter, with an OCT catheter and an IVUS catheter for image monitoring and with the position sensor system.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: August 31, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Maschke
  • Patent number: 7778682
    Abstract: Herein is disclosed a magnetic resonance imaging antenna, including an inner conductor, an outer shield slideably displaceable with respect to the inner conductor, and an insulator electrically insulating the inner conductor from the outer shield. Herein is disclosed a biopsy needle antenna, including a magnetic resonance imaging antenna, having an outer shield, and an inner conductor electrically insulated from the outer shield by a dielectric; and a biopsy needle electrically connected to the inner conductor and electrically insulated from the outer shield by the dielectric. Herein is disclosed a method of obtaining a sample with magnetic resonance imaging guidance, including providing a sampling needle magnetic resonance imaging antenna, advancing the antenna to a structure from which the sample is to be taken, detecting magnetic resonance data by the antenna, and coupling the sample to the antenna.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 17, 2010
    Assignee: Johns Hopkins University
    Inventors: Ananda Kumar, Ergin Atalar, Ogan Ocali
  • Patent number: 7778686
    Abstract: A system and method for a medical intervention procedure within a cardiac chamber having an imaging system to obtain image data of the cardiac chamber and to create a 3D model from that image data, an interventional system to register the 3D model with a real-time image of the cardiac chamber and to display the 3D model, and an interventional tool positioned in the cardiac chamber to be displayed upon the interventional system and to be navigated in real-time over the registered 3D model. Preferably, the method and system also includes a storage medium to store the 3D model and wherein the interventional system receives the stored 3D model to register with the real-time image of the cardiac chamber.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: August 17, 2010
    Assignees: General Electric Company
    Inventors: Melissa Vass, Jasbir S. Sra
  • Patent number: 7769429
    Abstract: Determining impingement between first and second bodies by determining a spatial relationship between surface points of the first body and markers of a first reference element; determining a spatial relationship between surface points of the second body and markers of a second reference element; displacing the first and second bodies relative to the other body; determining 3D coordinates of the respective pluralities of markers; and using at least (1) the 3D coordinates of the respective pluralities of markers of the reference elements, (2) the determined relationship between surface points of the first body and markers of the first reference elements, and (3) the determined relationship between surface points of the second body and markers of the second reference elements, to determine whether a surface point of one of the first and second bodies coincides with a surface point of the other body.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: August 3, 2010
    Assignee: AO Technology AG
    Inventor: Qingmao Hu
  • Patent number: 7766848
    Abstract: A mechanically formed transducer capable of producing a non-ideal focal region is described. The transducer has a plurality of piezoelectric elements suspended in an epoxy and heat molded into a desired shape. One or more shaped irregularities in the transducer provides for a mechanically induced non-ideal focal field without the need for electronic steering or lens focusing. Systems and methods of making the same are also described.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: August 3, 2010
    Assignee: Medicis Technologies Corporation
    Inventors: Charles S. Desilets, Jens U. Quistgaard
  • Patent number: 7762955
    Abstract: A method of mounting a transducer to a driveshaft which eliminates the need for a transducer housing, the improved method directly attaches the transducer to a rigid distal tip of a driveshaft which is part of a rotatable imaging core of a catheter assembly. The method contemplates heat treating the distal tip of the driveshaft to make it rigid, machining the distal tip to be dimensioned to hold the transducer, and attaching the transducer to the distal tip by clamping, crimping, or an adhesive.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: July 27, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Manuel Serrano, James D. Koger
  • Patent number: 7753852
    Abstract: Catheter device for performing atherectomy, comprising an atherectomy catheter, an OCT sensor, an IVUS sensor, position sensors and an image processing unit, which is embodied for creating combined 2D and/or 3D images based on the data of the sensors.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: July 13, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Maschke
  • Patent number: 7749165
    Abstract: An apparatus and methods to quantify the volume of urine in a human bladder with a limited number of acoustic beams is disclosed. In a first version a plurality of narrow ultrasound beams is transmitted in different directions towards the bladder. Returning echoes are converted to digital form and stored in memory. A volume display on the apparatus allows to define the optimal apposition of the transducer assembly. Signal processing software automatically determines the bladder Depth D and Height H and computes the volume of urine. In a second version, a single wide angle ultrasound beam transducer transmits ultrasounds signals at a fundamental frequency to quantify the urine volume. Return signals originating from a depth beyond the usual position of the posterior wall depth of a filled bladder are analyzed for presence of higher harmonic signals, which in turn are related to the presence or absence of urine.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: July 6, 2010
    Assignee: Verathon Inc.
    Inventors: Gerald McMorrow, Henri Baartmans, Nicolaas Bom, Charles Theodoor Lancee
  • Patent number: 7736317
    Abstract: An ultrasound transducer array (408) includes at least one transducer element (412) having a first (604) and second (606) portions separated by an acoustical discontinuity (520). The first portion (604) has the desired length to form a half-wave k31 resonance, while the second portion (606) has a resonant length for an undesired very low frequency out-of-band k31 resonance. The thickness of the transducer element (412) is designed for k33 half-resonance. Given the design, the transducer element (412) can operate and provide for both forward-looking (514) and side looking (512) elevation apertures. A method is also disclosed for using the disclosed ultrasound transducer (412) in ultrasound imaging.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: June 15, 2010
    Assignee: Volcano Corporation
    Inventors: Douglas N. Stephens, Matthew O'Donnell
  • Patent number: 7729745
    Abstract: Device for carrying out rotablation, comprising a rotablation catheter, an OCT sensor, an IVUS sensor, position sensors and also an image processing unit, which is embodied for the creation of combined 2D or 3D images based on the data of the sensors.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: June 1, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventor: Michael Maschke
  • Patent number: 7729749
    Abstract: Methods and apparatus are provided for evaluating a connective tissue condition of a patient (e.g., a disease, a risk of developing a disease, a risk of developing a fracture, etc.). For example, an indicator associated with the connective tissue condition may be generated. First, tissue at a first location of the body of the patient is irradiated using a light source. The tissue may be irradiated in vivo through the skin or via an incision, for example. Alternatively, a biopsy of the tissue may be irradiated. Then, spectral content information for light scattered, reflected, or transmitted by the irradiated tissue is determined. The spectral content information may be used, at least in part, to generate an indicator associated with a condition of connective tissue at a second location of the body of the patient, the second location remote from the first location. The indicator may, for example, assist a physician in diagnosing or ruling out the connective tissue condition.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: June 1, 2010
    Assignee: The Regents of the University of Michigan
    Inventors: Blake J. Roessler, Michael D. Morris, Karen A. Dehring