Patents Examined by Jonathan L Sample
  • Patent number: 11731278
    Abstract: A method includes receiving an indication that a web-based application has been accessed for control of a robotic device by a mobile device, wherein the mobile device comprises one or more sensors to detect movement of the mobile device. The method further includes subscribing the web-based application to at least one motion event web API, wherein the at least one motion event web API listens normalizes motion data from the one or more sensors of the mobile device into one or more standardized motion parameters. The method additionally includes receiving the one or more standardized motion parameters of the mobile device from the at least one motion event web API. The method further includes converting the one or more standardized motion parameters into one or more requested movement commands for the robotic device. The method further includes sending the one or more requested movement commands to the robotic device.
    Type: Grant
    Filed: April 20, 2020
    Date of Patent: August 22, 2023
    Assignee: Google LLC
    Inventor: Renato Cazangi
  • Patent number: 11726490
    Abstract: A robotic device, including a tangible, non-transitory, machine readable medium storing instructions that when executed by a processor effectuates operations including: capturing, with the camera, one or more images of an environment of the robotic device; capturing, with the plurality of sensors, sensor data of the environment; generating or updating, with the processor, a map of the environment; identifying, with the processor, one or more rooms in the map; receiving, with the processor, one or more multidimensional arrays including at least one parameter that is used to identify a feature included in the one or more images; determining, with the processor, a position and orientation of the robotic device relative to the feature; and transmitting, with the processor, a signal to the processor of the controller to adjust a heading of the robotic device.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: August 15, 2023
    Assignee: AI Incorporated
    Inventors: Ali Ebrahimi Afrouzi, Lukas Fath, Chen Zhang, Brian Highfill
  • Patent number: 11717363
    Abstract: A foot pedal for a robotic surgical system includes a base plate, a foot plate, a first biasing member, and a second biasing member. The foot plate is pivotally coupled to the base plate and has uncompressed, partially compressed, and fully compressed positions. The first biasing member is configured to urge the foot plate towards the uncompressed position when the foot plate is between the fully compressed and uncompressed positions. The second biasing member is configured to urge the foot plate towards the uncompressed position when the foot plate is between the fully compressed and partially compressed positions. Methods for using the foot pedal to control a tool and a camera of a surgical robot are also disclosed.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 8, 2023
    Assignee: COVIDIEN LP
    Inventor: William Peine
  • Patent number: 11717958
    Abstract: A method for a multi-legged robot having a body and a number of legs, includes: obtaining a current pose of the body, forces applied to the body, and joint angles of each of supporting legs of the legs; creating a mapping matrix from the forces applied to the body to desired support forces applied to soles of the supporting legs; obtaining priority targets by prioritizing the forces acting in different directions, determining a weight matrix for each priority target, and creating an optimization model of the support forces for each priority target based on the mapping matrix and the weight matrices; solving the optimization model of each of the priority targets to obtain the desired support forces corresponding to each of the priority targets; and calculating joint torques of the supporting legs for joint control, based on the solved desired support forces and Jacobian matrices corresponding to the supporting legs.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: August 8, 2023
    Assignee: UBTECH ROBOTICS CORP LTD
    Inventors: Zhe Xu, Mingguo Zhao, Youjun Xiong
  • Patent number: 11712805
    Abstract: A method for controlling a robotic arm in a robotic surgical system includes defining a reference plane at a predetermined reference location for a robotic arm, where the robotic arm includes a plurality of joints, and driving at least one of the plurality of joints to guide the robotic arm through a series of predetermined poses substantially constrained within the reference plane.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: August 1, 2023
    Assignee: Verb Surgical Inc.
    Inventors: Renbin Zhou, Haoran Yu, Sina Nia Kosari, Omar J. Vakharia, Bernard Fai Kin Siu, Alex Kiturkes
  • Patent number: 11707336
    Abstract: A method and system for hand tracking in a robotic system includes a hand tracking system and a controller coupled to the hand tracking system. The controller is configured to receive, from the hand tracking system, a plurality of locations of a hand; determine if the hand is in a first hand pose based on the plurality of locations; in response to determining that the hand is in the first hand pose, and switch the robotic system to a hand trajectory detection mode. While in the hand trajectory detection mode, the control unit is configured to detect, based on hand tracking information from the hand tracking system, that the hand has performed a first hand trajectory of a plurality of known hand trajectories; and in response to detecting the first hand trajectory, change a mode of operation of the robotic system.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 25, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. Dimaio, Paul E. Lilagan, Tao Zhao
  • Patent number: 11701778
    Abstract: Systems and methods for robotic path planning are disclosed. In some implementations of the present disclosure, a robot can generate a cost map associated with an environment of the robot. The cost map can comprise a plurality of pixels each corresponding to a location in the environment, where each pixel can have an associated cost. The robot can further generate a plurality of masks having projected path portions for the travel of the robot within the environment, where each mask comprises a plurality of mask pixels that correspond to locations in the environment. The robot can then determine a mask cost associated with each mask based at least in part on the cost map and select a mask based at least in part on the mask cost. Based on the projected path portions within the selected mask, the robot can navigate a space.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: July 18, 2023
    Assignee: Brain Corporation
    Inventors: Oleg Sinyavskiy, Jean-Baptiste Passot, Borja Ibarz Gabardos, Diana Vu Le
  • Patent number: 11702879
    Abstract: A method for controlling door motions of a controllable door of a motor vehicle, wherein a control device and a sensor arrangement are assigned to the door, and the door includes a controllable motion influencing device. A motion of a door wing of the door can be controlled and influenced by the motion influencing device to alternate between a closed position and an open position. The sensor arrangement includes a surround sensor and monitors the surroundings of the door. The control device captures the signals from the sensor arrangement and evaluates the movement of an object in the surroundings of the door relative to the door and actively moves the door wing of the door, to prevent a collision with the object or to reduce its effects.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: July 18, 2023
    Assignee: INVENTUS Engineering GmbH
    Inventor: Stefan Battlogg
  • Patent number: 11697203
    Abstract: An electronic apparatus is provided. The electronic apparatus includes a communicator comprising communication circuitry, a memory storing information on an artificial intelligence model, and a processor configured to: obtain a map generated based on sensing data obtained by an external electronic apparatus, simulate driving of the external electronic apparatus on the obtained map based on a plurality of parameter values and obtain driving result data for the plurality of parameter values, train the artificial intelligence model based on the plurality of parameter values and the obtained driving result data and obtain a plurality of parameter values related to driving of the external electronic apparatus, and control the communicator to transmit the plurality of obtained parameter values to the external electronic apparatus.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: July 11, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daekyoung Jung, Changhan Kim, Jonghyun Ho, Minsoo Koo, Jongrok Lim, Seowoo Jang
  • Patent number: 11690689
    Abstract: Inter-operative switching of tools in a robotic system includes a system with a plurality of manipulators and a controller. The controller is configured to detect mounting of a first imaging device to a first manipulator of the plurality of manipulators, the first imaging device having a first reference frame; in response to detecting the mounting of the first imaging device, control a tool relative to the first reference frame using a second manipulator of the plurality of manipulators, the tool being mounted to the second manipulator; detect mounting of a second imaging device to a third manipulator of the plurality of manipulators, the second imaging device having a second reference frame; and in response to detecting the mounting of the second imaging device, control the tool relative to the second reference frame using the second manipulator.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: July 4, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Niels Smaby, Gregory W. Dachs, II, Nicola Diolaiti, Pushkar Hingwe, Thomas R. Nixon, Bruce M. Schena, Nitish Swarup
  • Patent number: 11691236
    Abstract: During machining of a workpiece, a gripping force adjustment device takes into account the state of the machining and the state of the workpiece in order to set a more appropriate gripping force. The gripping force adjustment device acquires data indicating a machining state implemented by a machine tool and data relating to a gripping state realized on the workpiece by a jig, and creates data to be used in machine learning on the basis of the acquired data. The gripping force adjustment device then executes machine learning processing relating to the gripping force exerted on the workpiece by the jig in the environment in which the machine tool machines the workpiece on the basis of the created data.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: July 4, 2023
    Assignee: FANUC CORPORATION
    Inventor: Shinichi Ozeki
  • Patent number: 11685045
    Abstract: Asynchronous robotic control utilizing a trained critic network. During performance of a robotic task based on a sequence of robotic actions determined utilizing the critic network, a corresponding next robotic action of the sequence is determined while a corresponding previous robotic action of the sequence is still being implemented. Optionally, the next robotic action can be fully determined and/or can begin to be implemented before implementation of the previous robotic action is completed. In determining the next robotic action, most recently selected robotic action data is processed using the critic network, where such data conveys information about the previous robotic action that is still being implemented. Some implementations additionally or alternatively relate to determining when to implement a robotic action that is determined in an asynchronous manner.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: June 27, 2023
    Assignee: X DEVELOPMENT LLC
    Inventors: Alexander Herzog, Dmitry Kalashnikov, Julian Ibarz
  • Patent number: 11681292
    Abstract: A system and method for generating simulated vehicles with configured behaviors for analyzing autonomous vehicle motion planners are disclosed. A particular embodiment includes: receiving perception data from a plurality of perception data sensors; obtaining configuration instructions and data including pre-defined parameters and executables defining a specific driving behavior for each of a plurality of simulated dynamic vehicles; generating a target position and target speed for each of the plurality of simulated dynamic vehicles, the generated target positions and target speeds being based on the perception data and the configuration instructions and data; and generating a plurality of trajectories and acceleration profiles to transition each of the plurality of simulated dynamic vehicles from a current position and speed to the corresponding target position and target speed.
    Type: Grant
    Filed: December 4, 2020
    Date of Patent: June 20, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Xingdong Li, Xing Sun, Wutu Lin, Liu Liu
  • Patent number: 11678946
    Abstract: An apparatus for calibration of a robotic arm having an end effector of a robot includes a magnetic coupler having a body, a receiving face, a mounting member, and a magnetic portion. The mounting member is configured to fixedly connect to the end effector of the robotic arm. A mechanical digitizer probe having a ball and a handle are provided, where the ball is fixedly attached to a distal end of the handle and the ball is removably coupled to the magnetic coupler via the magnetic portion on the receiving face to form a rotatable ball and socket connection, and where a proximal end of the handle is adapted to be attached to a mechanical digitizer associated with the robot. A method for calibration of the robotic arm of a robot is also detailed.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: June 20, 2023
    Assignee: Think Surgical, Inc.
    Inventors: Kamran Shamaei Ghahfarokhi, Feimo Shen, Barry Voorhees, Muhammad Afnan
  • Patent number: 11681988
    Abstract: Systems, methods, and non-transitory computer-readable media can receive stop point data from a plurality of sources. The stop point data can be aggregated into a central repository. A request for stop point data at a particular location can be received from a first vehicle. The stop point data at the particular location stored in the central repository can be transmitted to the first vehicle.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: June 20, 2023
    Assignee: Pony AI Inc.
    Inventors: Peter G. Diehl, Robert Dingli
  • Patent number: 11672621
    Abstract: An example medical device may include a first component including an interface, a light feature surrounding at least part of the interface, and a controller coupled to the light feature and including a memory in which are stored instructions for the controller causing a first illumination state of the light a feature corresponding to a first state of the interface, and the controller causing a second illumination state of the Sight feature corresponding to a second state of the interface.
    Type: Grant
    Filed: July 25, 2018
    Date of Patent: June 13, 2023
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Timothy B. Hulford, Christopher B. Allenby, Lauren L. Argo, Russell L. E. Blanchard, Roman Lapaev
  • Patent number: 11672619
    Abstract: A teleoperated system includes a master grip and a ratcheting system coupled to the master grip. The ratcheting system is configured to align the master grip with a slave instrument commanded by the master grip by determining grip rotation values describing an orientation of the master grip, determining instrument rotation values describing an orientation of the instrument, determining an orientation error between an orientation of the master grip and the orientation of the instrument based on the grip rotation values and the instrument rotation values, and reducing the orientation error by low pass filtering the grip rotation values or the instrument rotation values.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 13, 2023
    Assignee: INTUITIVE SURGICAL OPERATIONS, INC.
    Inventors: Brandon D. Itkowitz, Simon P. DiMaio, William C. Nowlin, Gunter D. Niemeyer, David S. Mintz
  • Patent number: 11667343
    Abstract: A robot system includes: an upper body section including one or more end-effectors; a lower body section including one or more legs; and an intermediate body section coupling the upper and lower body sections. An upper body control system operates at least one of the end-effectors. The intermediate body section experiences a first intermediate body linear force and/or moment based on an end-effector force acting on the at least one end-effector. A lower body control system operates the one or more legs. The one or more legs experience respective surface reaction forces. The intermediate body section experiences a second intermediate body linear force and/or moment based on the surface reaction forces. The lower body control system operates the one or more legs so that the second intermediate body linear force balances the first intermediate linear force and the second intermediate body moment balances the first intermediate body moment.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: June 6, 2023
    Assignee: Boston Dynamics, Inc.
    Inventors: Kevin Blankespoor, Benjamin Stephens, Nicolas Hudson, Yeuhi Abe, Jennifer Barry
  • Patent number: 11660754
    Abstract: A detection system and detection method for the sensors of a robot. A detection system installs three sensors at the motor side and power output terminal of the robot. A detection unit detects the normal or abnormal state of three sensors to index the abnormal sensor for maintenance, and two normal sensors are selected for keeping the robot safety operation without stop.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: May 30, 2023
    Assignee: TECHMAN ROBOT INC.
    Inventors: Chun-Wen Lai, I-Bing Su
  • Patent number: 11654569
    Abstract: An example method may include i) detecting a disturbance to a gait of a robot, where the gait includes a swing state and a step down state, the swing state including a target swing trajectory for a foot of the robot, and where the target swing trajectory includes a beginning and an end; and ii) based on the detected disturbance, causing the foot of the robot to enter the step down state before the foot reaches the end of the target swing trajectory.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: May 23, 2023
    Assignee: BOSTON DYNAMICS, INC.
    Inventors: Kevin Blankespoor, Benjamin Stephens, Marco da Silva