Patents Examined by Jonathan M Hurst
  • Patent number: 10906038
    Abstract: Disclosed herein are systems and methods for serial flow emulsion processes. Systems and methods as described herein result in reduced cross-contamination.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: February 2, 2021
    Assignee: Dropworks, Inc.
    Inventors: Christopher Michael Perkins, Matthew Ryan Dunn, Andrew Carl Larsen, Donna Kelley, Michael Barich, Kristopher Holub, Pin Kao
  • Patent number: 10908209
    Abstract: A semiconductor module includes a substrate; a plurality of semiconductor packages provided on the substrate; and an environment information indicator configured to display information related to an environment surrounding the plurality of semiconductor packages.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: February 2, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seyoung Won, Dan-Kyu Kang, Sang-Yeol Lee
  • Patent number: 10900007
    Abstract: According to various implementations, the bioreactor system includes a bioreactor vessel, an impeller for stirring contents within the vessel, a temperature control source for controlling the temperature of the contents of the vessel, an aeration system for supplying air to the vessel, and one or more data loggers. According to certain implementations, the impeller is a novel impeller design that spins more smoothly and rapidly than known impellers. In addition, the bioreactor system is modular, durable, and relatively inexpensive compared to existing bioreactor systems, which allows for bench-scale implementation, use with differently sized bioreactor vessels, and accessibility to more educational programs, according to some implementations.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: January 26, 2021
    Assignee: GEORGIA STATE UNIVERSITY RESEARCH FOUNDATION, INC.
    Inventors: Bryan Stubblefield, Eric Gilbert
  • Patent number: 10900011
    Abstract: Provided is a test apparatus in which a test for bacterial identification or antimicrobial susceptibility can be promptly determined. A division state of bacteria is monitored by performing microscopic observation of shapes and the number of the bacteria in each of wells in a culture plate for bacterial identification culture or an antimicrobial susceptibility test, and it is determined whether or not the bacteria grow in a stage shifted from an induction phase to a logarithmic phase, with reference to an image obtained through microscopic observation. In addition, determination performed based on turbidity in the related art may be combined with determination performed based on microscopic observation in which change and the like in the shapes of the bacteria are monitored. Accordingly, it is possible to realize a highly accurate test result.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: January 26, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Chihiro Uematsu, Muneo Maeshima, Akira Masuya
  • Patent number: 10894941
    Abstract: A microfluidic multi-well-based cell culture testing device is provided. The multi-well-based cell culture testing device has an array structure of a plurality of aligned microfluidic well units. Each of the microfluidic well units comprises an inlet through which a first fluid enters, an accommodation compartment adapted to accommodate a second fluid therein, a microfluidic channel through which the first fluid flows, and an air outlet adapted to facilitate the entering of the first fluid.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: January 19, 2021
    Assignee: QUANTAMATRIX INC.
    Inventors: Yong Gyun Jung, Eun Geun Kim, Sung hoon Kwon, Jung Il Choi
  • Patent number: 10884006
    Abstract: A heating device for heating a thermally fixable sealing cover disposed over the microplate adjacent the wells, a cooling device for actively cooling the microplate and a controller set up to control activity of the heating and cooling devices in a manner to heat the sealing cover so as to thermally fix it to the microplate and to actively cool the microplate so as to keep a temperature of the samples below a predefined temperature when heating the sealing cover. It further relates to a method for automatically sealing a microplate in which the thermally fusible sealing cover is disposed over the microplate, the sealing cover is heated to thermally fix it to the microplate and the microplate is actively cooled in a manner that a temperature of the liquid reaction mixtures is kept below a predefined temperature when heating the sealing cover.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: January 5, 2021
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Daniel Bommer, Thomas Schlaubitz, Pius Studer
  • Patent number: 10857535
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: December 8, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10852296
    Abstract: Cell and organ (or tissue) cultures provide a micro-environment with respect to nutrients, gas exchange, and scaffolding in order to encourage specific cell function, and in some cases to mimic in-vivo cellular expression under in-vitro conditions. We describe apparatus and methods to chemically, spatially, and temporally measure diffusible molecules produced, or used by cells or tissues in culture. In this manner, mechanisms of cell-cell interaction and other chemical signaling, detailed biochemical pathways, and the action of potential pharmaco-therapy agents can be better understood at a molecular level. In addition to basic science, the technical advantages of process monitoring and control can be applied to optimize culture products in bioreactors. Embodiments of this device are intended to simulate and monitor [input and output] the behavior of vascular capillary beds in higher species vascular systems.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: December 1, 2020
    Assignee: BiOMICom Incorporated
    Inventors: James D. Buchner, Ross C. Willoughby
  • Patent number: 10843188
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 24, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10829727
    Abstract: Described herein are a system, device, methods and compositions related to generating 3-dimensional cardiac tissues. Also described herein are a system, device, and methods of maturing 3-dimensional cardiac tissues and maintaining their viability in culture.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: November 10, 2020
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Christopher S. Chen, Rebeccah Luu, Anant Chopra
  • Patent number: 10821436
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 3, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10823722
    Abstract: The invention relates to a probe for measuring the biomass content in a medium having a suspending fluid and cells. The probe has at least three electrodes, wherein two of the electrodes are configured as excitation electrodes for transmitting an excitation signal through a medium. Two of the electrodes are configured as signal electrodes for receiving an excitation signal that has passed through the medium. The or each signal electrode is located between the two excitation electrodes at a position where a high current density is generated. The probe can have two excitation electrodes and four signal electrodes. The signal electrodes are configured substantially in parallel and arranged in couples adjacent each other, at positions between the excitation electrodes.
    Type: Grant
    Filed: December 7, 2015
    Date of Patent: November 3, 2020
    Assignee: Aber Instruments Limited
    Inventor: Robert Todd
  • Patent number: 10809255
    Abstract: According to one embodiment, a specimen measurement apparatus includes a detector, a reaction promoter and processing circuitry. The detector generates an electrical signal based on a reactive state in a reaction chamber in which a mixture of a test substance and a reagent is contained. The reaction promoter supplies to the reaction chamber energy to promote reaction in the reaction chamber. The processing circuitry switches an energy supply state in accordance with a predetermined time schedule, determines a stationary state of the test substance based on an electrical signal generated after the energy supply state is switched, and outputs the stationary state obtained by the determination.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: October 20, 2020
    Assignee: CANON MEDICAL SYSTEMS CORPORATION
    Inventors: Naoko Murase, Isao Nawata, Shoichi Kanayama
  • Patent number: 10801003
    Abstract: A single-use bioreactor is provided. The single-use bioreactor may include a bioprocess container, a shell, at least one agitator, at least one sparger, at least one gas filter inlet port for the sparger(s) and headspace overlay, at least one fill port, at least one harvest port, at least one sample port, and at least one probe. In examples, at least one controller may monitor and control one or more parameters associated with the single-use bioreactor A method to cultivate and propagate mammalian cells is also provided. The method may include cultivating under suitable conditions and in a suitable culture medium in a first single-use bioreactor, transferring the medium containing the cells obtained by propagation from the at least one mammalian cell is into a second single-use bioreactor, transferring the medium containing the cells obtained by propagation from the at least one mammalian cell is into a third single-use bioreactor, and cultivating the cells in the third bioreactor.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 13, 2020
    Assignee: LONZA LTD
    Inventors: Colin Mark Jaques, Mohsan Waseem Khan, Rita D'Ornelas P. De Barros Costa, Anthony Beaney, David Valentine
  • Patent number: 10799862
    Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.
    Type: Grant
    Filed: December 30, 2019
    Date of Patent: October 13, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
  • Patent number: 10793818
    Abstract: The purpose of the present invention is to provide a culture container capable of preventing a concave meniscus without using a jig. In order to achieve this purpose, the present invention provides a culture container (1A) provided with: a base (3) having a concave portion (4); and a water-repellent layer (5) formed on an outer edge region (411) of the bottom (41) of the concave portion (4) and the inner circumferential surface (42) of the concave portion (4). One of the surfaces of the water-repellent layer (5) is exposed to the space in the concave portion (4).
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: October 6, 2020
    Assignee: TOCALO CO., LTD.
    Inventors: Shinichi Gomi, Kenichi Kagawa, Yusuke Yoda, Shinya Miki, Tatsuya Hamaguchi
  • Patent number: 10774298
    Abstract: Described herein are systems, methods and kits for culturing and applying fresh microbial inoculants in the field. The system, methods and kits are easy to use, reliable, sealed to prevent contamination, and can be stored on location, for use on demand by those unskilled in the microbiological arts. Particular embodiments described herein may be used to increase agricultural crop yields.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: September 15, 2020
    Assignees: 3BAR BIOLOGICS, INC., OHIO STATE INNOVATION FOUNDATION
    Inventors: Bruce H. Caldwell, Brian B. McSpadden Gardener
  • Patent number: 10767149
    Abstract: The present subject matter provides a microfluidic device that enables the precise and repeatable three dimensional and compartmentalized coculture of muscle cells and neuronal cells. Related apparatus, systems, techniques, and articles are also described.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: September 8, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Roger Dale Kamm, Sebastien G M Uzel
  • Patent number: 10744469
    Abstract: A receptacle having a plurality of interconnected chambers arranged to permit multiple process steps or processes to be performed independently or simultaneously. The receptacles are manufactured to separate liquid from dried reagents and to maintain the stability of the dried reagents. An immiscible liquid, such as an oil, is included to control loading of process materials, facilitate mixing and reconstitution of dried reagents, limit evaporation, control heating of reaction materials, concentrate solid support materials to prevent clogging of fluid connections, provide minimum volumes for fluid transfers, and to prevent process materials from sticking to chamber surfaces. The receptacles can be adapted for use in systems having a processing instrument that includes an actuator system for selectively moving fluid substances between chambers and a detector. The actuator system can be arranged to concentrate an analyte present in a sample.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: August 18, 2020
    Assignees: Gen-Probe Incorporated, Qualigen, Inc.
    Inventors: Scott S. Breidenthal, Richard S. Lee, Norman C. Nelson, Matthew J. Scott, Jason A. Taylor
  • Patent number: 10731123
    Abstract: The present invention relates to a system for conducting the identification and quantification of micro-organisms, e.g., bacteria, in biological samples. More particularly, the invention relates to a system comprising a disposable cartridge and an optics cup or cuvette having a tapered surface; wherein the walls are angled to allow for better coating and better striations of the light. The system may utilize the disposable cartridge in the sample processor and the optics cup or cuvette in the optical analyzer, wherein the optics cup also has a floor in the shape of an inverted arch.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 4, 2020
    Assignee: POCARED Diagnostics LTD.
    Inventors: Gal Ingber, Martha J. Rogers