Patents Examined by Jonathan R Matthias
  • Patent number: 10443468
    Abstract: The fuel addition system comprises: a fuel addition valve, a fuel tank, a first pressure storage chamber storing fuel to be supplied to a fuel injector, a supply pump increasing a pressure of fuel inside the fuel tank and supplying the fuel to the first pressure storage chamber, a pressure reduction valve discharging fuel stored in the first pressure storage chamber, a pressure reduction fuel passage supplying fuel discharged from the first pressure storage chamber to the fuel addition valve, and a control device controlling the fuel addition valve and the pressure reduction valve. The control device detects or estimates a temperature of fuel supplied to the fuel addition valve and, when injecting fuel from the fuel addition valve, controls an amount of fuel discharged from the first pressure storage chamber through the pressure reduction valve so that the temperature of the fuel becomes a reference temperature or more.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: October 15, 2019
    Assignees: Soken, Inc., Toyota Jidosha Kabushiki Kaisha
    Inventors: Tetsuro Serai, Kenichi Tomomatsu, Takayoshi Kojima, Naoki Toda, Kazuhiro Umemoto, Toshihiro Mori, Hiromasa Nishioka
  • Patent number: 10422291
    Abstract: A method for injecting gaseous fuel directly into a combustion chamber of an internal combustion engine in order to heat a catalytic converter, the method including: carrying out a main injection of gaseous fuel directly into the combustion chamber; carrying out a first post-injection following the main injection but prior to an ignition, and following the ignition and preferably following the end of combustion in the combustion chamber, carrying out a second post-injection of gaseous fuel into the combustion chamber.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: September 24, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Alexander Eichhorn, David Lejsek
  • Patent number: 10415452
    Abstract: An automobile vehicle exhaust gas heat recovery system includes an engine having a turbocharger. A cooling pump provides coolant flow to the engine and the turbocharger. A combined coolant discharge header receives coolant discharged from the engine and the turbocharger. A main rotary valve receives coolant discharged from the combined coolant discharge header. The main rotary valve includes multiple rotary valves selectively distributing all of the coolant in the combined coolant discharge header to at least one of an engine heater, a heater core and a transmission oil heater during a cold start operation. An exhaust gas heat recovery (EGHR) device is positioned to receive the coolant discharged from any one, any two or all of the engine heater, the heater core and the transmission oil heater and in a path to return the coolant to the cooling pump during the cold start operation of the engine.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: September 17, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Daniel J. Shepard, Eugene V. Gonze, Douglas Dickson
  • Patent number: 10415450
    Abstract: A controller includes a switching delay circuit structured to determine an open delay time and a close delay time for a reductant injector, each based on battery voltage and reductant injector coil temperature. A dosing circuit is structured to determine an open time that the armature pin must be in the fully open position so as to cause the injector to inject a first quantity of reductant. An actuation time is determined based on each of the open time, the open delay time, and the close delay time. The actuation time relates to a time that the coil must be energized so as to cause the injector to inject the first quantity of reductant. A switching command signal is transmitted to the injector to energize the coil for the calculated actuation time so as to cause the injector to inject the first quantity of reductant into an exhaust gas stream.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 17, 2019
    Assignee: Cummins Emission Solutions Inc.
    Inventors: Vikram Sundararajan, Joe V. Hill
  • Patent number: 10413868
    Abstract: A device for purifying exhaust gas may be provided to purify exhaust gas in an engine includes an exhaust line through which exhaust gas discharged from the engine passes, a diesel oxidation catalyst (DOC) that is disposed in the exhaust line to purify hydrocarbon (HC) and carbon monoxide (CO) of the exhaust gas, a urea injector that injects a urea aqueous solution into the exhaust line, and a selective catalyst reduction (SCR) that reduces nitrogen oxide of the exhaust gas passing through the DOC by use of the urea aqueous solution, in which the DOC includes an LTA zeolite catalyst.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: September 17, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Hyokyung Lee
  • Patent number: 10408107
    Abstract: A power apparatus including a reducing agent supply control system includes: an engine configured to emit exhaust gas containing nitrogen oxide by burning air and fuel at a preset air-fuel ratio; an exhaust passage configured such that the exhaust gas emitted by the engine moves therethrough; a pressure sensor configured to actually measure the pressure of air which is supplied to the engine; a nitrogen oxide concentration sensor installed on the exhaust passage, and configured to measure the nitrogen oxide (NOx) concentration of the exhaust gas; a reducing agent supply unit configured to supply a reducing agent to the exhaust gas which moves along the exhaust passage; and a control unit configured to determine the amount of reducing agent to be supplied based on information received from the pressure sensor and the nitrogen oxide concentration sensor, and to control the reducing agent supply unit.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: September 10, 2019
    Assignee: DOOSAN INFRACORE CO., LTD.
    Inventors: Jae Hyoung Lee, Tae Sub Kim, Ki Bum Kim
  • Patent number: 10400650
    Abstract: An SCR injection system for an internal combustion engine is disclosed. Under certain conditions, reductant fluid supplied by the system may form deposits in a reductant injector. In order to dissolve the deposits, a reductant supply line includes at least a portion with a downward slope that is disposed above a reductant inlet of the reductant injector. This allows reductant fluid in the sloped portion to flow to the reductant inlet due to gravity. Advantageously, a bent portion is provided between the reductant inlet and the sloped portion in order to trap reductant fluid that may flow back towards the reductant injector when the system is purged.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: September 3, 2019
    Assignee: Perkins Engines Company Limited
    Inventors: Siddharth Subhash Gharpure, Tom Carlill
  • Patent number: 10400700
    Abstract: An internal combustion engine system includes a control system with a monitoring mechanism producing data of engine operating state within a BMEP/speed envelope, and an electronic control unit structured to output a control command to vary at least one of a fuel delivery property or an air delivery property in the engine based on the data. Outputting the control command switches the engine between or among combustion modes that each satisfy different calibration criteria for optimizing aftertreatment function.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: September 3, 2019
    Assignee: Caterpillar Inc.
    Inventors: Paul Moore, Derek Tanis, Sylvain Charbonnel, Ry Colwell, Richard Breitzman
  • Patent number: 10400695
    Abstract: An exhaust gas control system of an internal combustion engine includes an EGR device, a three-way catalyst, and an electronic control unit. The electronic control unit is configured to control the air-fuel ratio of the exhaust gas flowing into the three-way catalyst such that the air-fuel ratio when the electronic control unit executes EGR control during execution of fuel cut control and then executes the enrichment processing after the execution of the fuel cut control ends to be a higher air-fuel ratio in a range of the rich air-fuel ratio compared to the air-fuel ratio when the EGR control is not executed during the execution of the fuel cut control.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: September 3, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yuji Yamaguchi, Yoshihisa Shinoda
  • Patent number: 10392992
    Abstract: An exhaust gas cleaning system comprises a reducing agent injection module installed in an housing mounted in an exhaust pipe through which an exhaust gas is discharged, the reducing agent injection module being configured to inject a reducing agent into the housing, a selective catalyst reduction device installed in rear of the reducing agent injection module and configured to catalytic react the reducing agent with nitrogen oxide included in the exhaust gas to reduce the nitrogen oxide, a differential pressure sensor to detect a differential pressure between a pressure in the housing in front of the selective catalyst reduction device and a pressure of the housing in rear of the selective catalyst reduction device, and a control device to receive the pressure information from the differential pressure sensor and to output a first warning signal when the detected differential pressure is lower than a predetermined pressure.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: August 27, 2019
    Assignee: DOOSAN INFRACORE CO., LTD.
    Inventors: Seung-Eun Moon, In-Hyuk Im, Tae-Hyung Kim, Nam-Il Choi
  • Patent number: 10392997
    Abstract: The present disclosure provides a method for operating an exhaust gas aftertreatment device for cleaning an exhaust gas flow of a motor vehicle with an internal combustion engine operated in normal mode with oxygen surplus. An oxygen store arranged downstream of an NOx storage catalyst of the exhaust gas aftertreatment device receives oxygen in normal mode, and during a regeneration mode emits oxygen for converting breakthrough hydrocarbons and/or carbon monoxide. The oxygen store is assigned to a particulate filter and/or an oxidation catalyst of the exhaust gas aftertreatment device. The particulate filter and/or the oxidation catalyst is arranged downstream of the NOx storage catalyst.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: August 27, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Jan Harmsen, Mario Balenovic
  • Patent number: 10392994
    Abstract: An aftertreatment system comprises a first passageway having a first temperature and a second passageway having a second temperature different than the first temperature. A turbine is disposed downstream from the first passageway and upstream from the second passageway. The turbine is in fluidic communication with the first passageway and the second passageway. The turbine is structured to receive an exhaust gas from the first passageway, generate energy using the exhaust gas flowing through the turbine and communicate the exhaust gas to the second passageway. The aftertreatment system also includes an insertion device structured to insert an exhaust reductant into the first passageway. A selective catalytic reduction system is configured to receive the exhaust gas from the second passageway and treat the exhaust gas. The first temperature can be higher than the second temperature.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: August 27, 2019
    Assignee: Cummins, Inc.
    Inventors: John K. Heichelbech, John G. Buechler, Richard J. Ancimer, Thomas M. Yonushonis
  • Patent number: 10385753
    Abstract: An apparatus for diagnosing deterioration of an NOx storage-reduction catalyst for purifying an exhaust gas discharged from an internal engine, including an intake air amount detection unit for detecting an intake air amount to the internal combustion engine, an exhaust gas temperature detection unit for detecting the temperature of an exhaust gas passing through the NOx storage-reduction catalyst, an NOx purification rate detection unit for detecting NOx in an exhaust gas flowing into the NOx storage-reduction catalyst and in an exhaust gas flowing out of the NOx storage-reduction catalyst, thereby detecting an NOx purification rate, and a diagnostic unit for, when the temperature of the exhaust gas passing through the NOx storage-reduction catalyst increases following an increase in the intake air flow rate to the internal combustion engine and in turn, the temperature of the NOx storage-reduction catalyst greatly increases over a first predetermined threshold value, calculating a difference in the NOx puri
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: August 20, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Nobukawa, Tomomasa Aikawa
  • Patent number: 10371073
    Abstract: A vehicle system includes: an engine including a combustion chamber in which an air-fuel mixture is burned to generate energy, an intake manifold which supplies air to the combustion chamber, an injector which supplies fuel to the combustion chamber, and an exhaust manifold which discharges exhaust gas generated by combustion of the air-fuel mixture through an exhaust pipe; a hybrid starter and generator (HSG) which generates electricity by starting the engine or by using energy generated in the engine; a soot filter which is mounted to the exhaust pipe and collects particulate matters (soot) included in exhaust gas; and a control unit which controls an operation of the injector and controls an operation of the HSG, in which when the quantity of soot is larger than a predetermined quantity, the control unit increases a size of a load of the HSG by a predetermined load quantity until a temperature of the soot filter reaches a predetermined temperature.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: August 6, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Hwa Yong Jang
  • Patent number: 10364727
    Abstract: A reducing agent is supplied to an NOx catalyst in a suitable manner, while suppressing NOx from being produced by oxidation of ammonia in the NOx catalyst. In cases where the temperature of NOx is equal to or higher than a predetermined temperature at which ammonia is oxidized, an amount of ammonia or an amount of a precursor thereof to be added into exhaust gas from an addition valve is made smaller, when an air fuel ratio of exhaust gas flowing into the NOx catalyst is larger than a predetermined air fuel ratio, than when the air fuel ratio of the exhaust gas is equal to or less than the predetermined air fuel ratio.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 30, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Arifumi Matsumoto
  • Patent number: 10364722
    Abstract: A method for regulating an exhaust-gas aftertreatment device for an internal combustion engine, wherein respectively one loading state of a first SCR component and of a second SCR component arranged downstream of the first SCR component is determined. The loading state of the second SCR component is regulated by way of a dosing system for dosing a reducing agent.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: July 30, 2019
    Assignee: FEV EUROPE GMBH
    Inventors: Sebastian Petri, Eric Brueckner, Ibrahim Can Ozyalcin
  • Patent number: 10364733
    Abstract: An internal combustion engine includes a manifold channel. With respect to a longest cylinder that is a cylinder whose flow channel length from the cylinder to a collective portion is the longest among three cylinders, the manifold channel is provided with a hollow layer that covers a part of a channel wall in the flow channel direction of a branch channel connected to the longest cylinder. With respect to a shortest cylinder that is a cylinder whose flow channel length from the cylinder to the collective portion are the shortest, the manifold channel is not provided with a hollow layer that covers a channel wall of a branch channel connected to the shortest cylinder. A wall that forms the hollow layer for the longest cylinder is formed integrally and continuously with the same material as a channel wall of the branch channel connected to the longest cylinder.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: July 30, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Takashi Amano
  • Patent number: 10364716
    Abstract: An exhaust gas control apparatus includes a first catalyst, a filter, and an electronic control unit. The electronic control unit is configured to alternately execute lean control and rich control multiple times. The lean control is control for, over a period longer than a period from when a target air-fuel ratio is set to a predetermined lean air-fuel ratio until an air-fuel ratio of exhaust gas flowing out from the first catalyst becomes greater than the stoichiometric air-fuel ratio, setting the target air-fuel ratio to the predetermined lean air-fuel ratio. The rich control is control for, over a period longer than a period from when the target air-fuel ratio is set to a predetermined rich air-fuel ratio until the air-fuel ratio of exhaust gas flowing out from the first catalyst becomes smaller than the stoichiometric air-fuel ratio, setting the target air-fuel ratio to the predetermined rich air-fuel ratio.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 30, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoya Kaneko, Takayuki Ohtsuka
  • Patent number: 10364726
    Abstract: In a method for heating an operating agent for a rail vehicle, particularly for heating a reducing agent for the after-treatment of exhaust gas, a coolant liquid is pumped through a cooling circuit of the internal combustion engine by a pump when an operating agent heating system is in an operating mode. In the operating mode, the coolant liquid is pumpable through a main heating circuit by of the pump in order to heat the operating agent in a reservoir. When the operating agent heating system is in a preheating mode, the main heating circuit is divided into two sub-circuits of a preheating circuit, the flow being able to pass through both of the sub-circuits.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: July 30, 2019
    Assignee: Siemens Aktiengesellschaft
    Inventors: Joerg Baltes, Stefan Hintermeir
  • Patent number: 10357744
    Abstract: An exhaust gas purification device of the present invention is provided with: a substrate of wall flow structure having an inlet cell, an outlet cell and a porous partition wall; an upstream catalyst layer, provided inside the partition wall and disposed in an upstream portion of the substrate including an exhaust gas inflow end section; and a downstream catalyst layer, provided inside the partition wall and disposed in a downstream portion of the substrate including an exhaust gas outflow end section. The upstream catalyst layer and the downstream catalyst layer each contain a carrier and at least one noble metal from among Pt, Pd and Rh, supported on the carrier. The noble metal in the upstream catalyst layer and the noble metal in the downstream catalyst layer are different from each other.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: July 23, 2019
    Assignee: CATALER CORPORATION
    Inventors: Tatsuya Ohashi, Shingo Sakagami, Tsuyoshi Ito, Ryota Onoe, Naoto Miyoshi, Masahiko Takeuchi, Akemi Sato