Abstract: A seismic acquisition system and method utilizing an array of buried geophones storage devices or containers (16) each having a geophone (40) which may be permanently stored in container (16) in a fluid tight relation. The storage container (16) includes a base (26), a tubular cylindrical body (28), and an upper cap (32) threaded onto body (28). The storage container (16) is shown in FIG. 2 in an operable relation and in FIG. 3 with geophone (40), lead (52), and connector (54) in a stored relation. In the event an additional survey or shoot is conducted at a later time, such as a one year time interval, the buried storage containers (16) are utilized upon removal of outer caps (32) and withdrawing of geophone connectors (54) for connection in a mating relation to cable connectors (20).
Abstract: A signal scaling system and methodology for use in a signal measurement system such as a digital or analog oscilloscope, logic analyzer, network analyzer, spectrum analyzer or waveform generator that has a graphical user interface which controls a waveform display region on a display device. The signal scaling system determines one or more displayed waveform scaling parameters to cause portions of selected displayed waveforms appearing within a rescaling rectangle to occupy a predetermined portion of the waveform display region other than the rescaling rectangle. For each of the selected displayed waveforms, the scaling parameters may include horizontal scaling, horizontal offset, vertical scaling and vertical offset. Preferably, the predetermined portion of the waveform display region comprises the entire waveform display region and the selected displayed waveforms include all waveforms at least partially within the rescaling rectangle.
Abstract: An improved bottom cable for a seismic marine data acquisition system 10. The bottom cable 30 includes a cable section 30b having a bus 48. The cable, along with the cable section and bus, are used to electrically connect a master control unit 40 to first and second modules 32b and 32c, respectively. The bus 48 includes first and second switches 48b and 48c, respectively, located near opposite ends of the bus. In this way, if a leak R1 occurs in the bus, the first and second switches can be opened, thereby electrically isolating the bus and stopping the leak.
Type:
Grant
Filed:
October 31, 1997
Date of Patent:
March 16, 1999
Assignee:
Input/Output, Inc.
Inventors:
Paul Ellington Carroll, Karl Joseph Schuler, Roy Wilson James III