Patents Examined by Jonathan Sample
  • Patent number: 8068935
    Abstract: A method of mapping an operation area by a team of a human and a mobile robot 200 includes the steps of defining a graph representing the area by a human 201, guiding the robot by human along an edge 203, stopping at a vertex in the graph by the team 203, creating a vertex record if stopped at a new vertex 205, localizing the robot and vertices if stopped at an existing vertex 206, creating an edge record if finished a new edge 208, and outputting an area's map including a set of vertex records and a set of edge record by the robot 210. The robot's human-tracking step 203 includes the steps of obtaining a 2-DOF motion command from sensors that detect the human's action and executing a 2-DOF motion based on the motion command.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: November 29, 2011
    Inventor: Yutaka Kanayama
  • Patent number: 8068951
    Abstract: There is provided a method of providing vehicle support. The method includes receiving diagnostic data from the onboard vehicle computer. The diagnostic data is received by an automotive diagnostic tool and is then communicated to a prior experience database having information related to diagnostic solutions associated with combinations of diagnostic data. The prior experience database is arranged to match the received diagnostic data to possible diagnostic solutions. The diagnostic solutions are then prioritized in accordance with ranked matches of the received diagnostic data to the previous combinations of diagnostic data stored in the prior experience database. The possible diagnostic solution associated with the highest ranked combination of diagnostic data is identified as the most likely solution. Vehicle components associated with the most likely solution are then identified.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: November 29, 2011
    Inventors: Ieon C. Chen, Keith Andreasen, Phuong Pham, Robert Madison
  • Patent number: 8065044
    Abstract: A vehicle guidance system comprising: a measurement system; a processor arranged to receive information from the measurement system and convert said information into at least one time-to-contact based parameter; and a control system arranged to receive the at least one time-to-contact based parameter from the processor and use the at least one time-to-contact based parameter to either automatically guide the vehicle or to provide vehicle guidance information to a pilot.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: November 22, 2011
    Assignee: The University of Liverpool
    Inventors: Michael Jump, Gareth D. Padfield, David N. Lee
  • Patent number: 8027765
    Abstract: A stabilizer system for a vehicle that includes a stabilizer bar and an actuator for changing stiffness of the stabilizer bar, an electric current to be supplied to an electric motor that is a drive source of the actuator is changed based on various parameters. The supply current is made smaller in a situation in which an operational direction of the actuator is toward a neutral position, than in another situation. Further, the supply current is made smaller with an increase in a distance of the operational position of the actuator from the neutral position. Moreover, the supply current is made larger with an increase in a steering speed. In detail, when the supply current is determined by multiplying a basic supply current by a control gain, the control gain is set to change depending upon the above-indicated parameter, whereby the supply current is changed based on the parameters.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: September 27, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shingo Urababa, Satoshi Suzuki, Yoshihiro Iida, Takashi Sugano
  • Patent number: 8019503
    Abstract: A method of processing vehicle diagnostic data is provided for identifying likely vehicle fix(s) associated with a diagnostic data, and identifying a repair procedure(s) for correcting the likely fix(s). The process receiving vehicle diagnostic data from a vehicle onboard computer at a remote diagnostic database, the database being arranged to map vehicle diagnostic data to possible vehicle fix(s). The possible vehicle fix(s) are prioritized in accordance with ranked matches of the received diagnostic data to combinations of diagnostic data stored in a prior experience database. The prior experience database having an identified fix associated with each stored combination of diagnostic data. The fix associated with the highest ranked combination of diagnostic data is identified as the most likely fix. The most likely fix is mapped to a vehicle repair database, the most likely fix being directly mapped to an associated repair procedure for repairing the most likely fix.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: September 13, 2011
    Inventors: Keith Andreasen, Robert Madison
  • Patent number: 7877198
    Abstract: A system and method of identify fuel savings opportunity in a fleet of vehicles based on a determination of fuel consumption due to modifiable use conditions is described. Modifiable use conditions, such as unauthorized usage, speeding and excessive idling, which represent opportunities for fuel savings are identified and fuel consumption based on the modifiable use conditions is determined. A user-defined statistical metric for the fleet, or a portion of the fleet, can be determined for each of the modifiable use conditions evaluated. Fuel consumption of an individual vehicle, or a group of vehicles, resulting from modifiable use conditions can be compared with a larger group of vehicle, or the fleet, to determine vehicles which correspond to a metric of the fleet. Fleet managers can use this information to modify the use conditions of individual or group of vehicles to provide fuel savings for the fleet.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: January 25, 2011
    Assignee: General Electric Company
    Inventors: Stephen Tenzer, Benjamin J. Nielsen, Jon Passman
  • Patent number: 7848858
    Abstract: Vehicular drive system which is small-sized and/or improved in its fuel economy. A power distributing mechanism 16, which is provided with a differential-state switching device in the form of a switching clutch C0 and a switching brake B0, is switchable by the switching device between a differential state (continuously-variable shifting state) in which the mechanism is operable as an electrically controlled continuously variable transmission, and a fixed-speed-ratio shifting state in which the mechanism is operable as a transmission having a fixed speed ratio or ratios. The power distributing mechanism 16 is placed in the fixed-speed-ratio shifting state during a high-speed running of the vehicle or a high-speed operation of engine 8, so that the output of the engine 8 is transmitted to drive wheels 38 primarily through a mechanical power transmitting path, whereby fuel economy of the vehicle is improved owing to reduction of a loss of conversion of a mechanical energy into an electric energy.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: December 7, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Atsushi Tabata, Yutaka Taga
  • Patent number: 7813836
    Abstract: A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 12, 2010
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 7805226
    Abstract: A control system for adjusting the attitude of a spacecraft comprises a set of control moment gyroscopes (CMGs) configured to allow null space maneuvering. The control system further comprises a momentum actuator control processor coupled to the set of CMGs and configured to determine a mandatory null space maneuver to avoid singularities and determine an optional null space maneuver to increase available torque. The mandatory null space maneuver can be calculated based upon certain gimbal angles, and can be implemented by augmenting the inverse-Jacobian control matrix.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: September 28, 2010
    Assignee: Honeywell International Inc.
    Inventors: Brian J. Hamilton, Brian K. Underhill
  • Patent number: 7797107
    Abstract: Method for transmitting a warning signal to a driver of a driven vehicle regarding an impending collision with a moving and/or stationary object in the vicinity of the driven vehicle.
    Type: Grant
    Filed: September 5, 2004
    Date of Patent: September 14, 2010
    Inventor: Zvi Shiller
  • Patent number: 7788031
    Abstract: When a rotary intersection is of large scale, “rotary intersection guidance based on exit number” is provided. That is, it is informed from what number exit road of the multiple exit roads of a rotary intersection, relative to an entrance road, the driver should get off. For example, the guidance of “Get off from the second exit road ahead” is provided. In contrast, when a rotary intersection is of small scale and the rotary intersection is in simple shape, “rotary intersection guidance based on direction guidance” is provided. That is, the direction of an exit road about which guidance is to be provided, relative to an entrance road, is informed. For example, the guidance of “Turn to the right” is provided.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: August 31, 2010
    Assignee: DENSO CORPORATION
    Inventor: Masami Mikame
  • Patent number: 7787989
    Abstract: The invention concerns a navigation device for a mobile robot comprising means for measuring the amplitude and the phase of an electromagnetic signal emitted by a wire acting as limit for a working area of the robot. The measuring means samples the amplitude of the signal during each time interval, the result of each measurement is stored in a memory and the measurements are repeated for several time intervals, the collected results being added in said memories until the content of a memory reaches a reference threshold. The number of samples required and the content of each memory is interpreted by numerical analysis to determine the distance or distance variation relative to said limiting elements. Any phase change corresponding to a passage beyond the limiting wire is easily detected and results for example in a command returning the robot to its working area.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: August 31, 2010
    Assignee: Husqvarna
    Inventor: André Colens
  • Patent number: 7783421
    Abstract: A navigation device includes a navigation information storage unit in which navigation information, including the user-provided data, is stored; and a human machine interface unit that outputs the user-provided data and navigation information other than the user-provided data separately on an output device, that displays a warning message, read from the navigation information storage unit, and a screen prompting for an input for selecting whether to perform navigation processing based on the user-provided data when an instruction for performing navigation processing based on the user-provided data is input from an input device, and that causes a control unit, which performs navigation processing, to perform navigation processing based on the user-provided data when an instruction for performing navigation processing based on the user-provided data is input from the input device. In this way, a navigation system where user-provided data and official data are reliably combined can be provided.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: August 24, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Toshifumi Arai, Michio Morioka
  • Patent number: 7783426
    Abstract: A driving support system for a vehicle being adaptable to both of a manual driving of which driving operation is under control of a driver and an automated driving of which automated driving operation is under one of a partial control and a full control of automation, the driving support system includes a detection function for detecting a surrounding condition of the vehicle and a traveling condition of the vehicle and an information provision function for providing driving support information based on the surrounding condition of the vehicle and the traveling condition of the vehicle detected by the detection means. The driving support information is provided by the information provision function when the conditions of the vehicle meet a predetermined criterion for information provision, and the information provision function uses different predetermined criterion for information provision in the manual driving and in the automated driving respectively.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: August 24, 2010
    Assignee: DENSO CORPORATION
    Inventors: Yoshiyuki Kato, Nobutaka Tauchi
  • Patent number: 7783383
    Abstract: In a preferred embodiment, an automated Pharmacy Admixture System (APAS) may include a manipulator system to transport medical containers such as bags, vials, or syringes in a compounding chamber regulated to a pressure below atmospheric pressure. In a preferred implementation, the manipulator system is configured to grasp and convey syringes, IV bags, and vials of varying shapes and sizes from a storage system in an adjacent chamber regulated at a pressure above atmospheric pressure. Various embodiments may include a controller adapted to actuate the manipulator system to bring a fill port of an IV bag, vial, or syringe into register with a filling port at a fluid transfer station in the chamber. A preferred implementation includes a sanitization system that can substantially sanitize a bung on a fill port of a vial or IV bag in preparation for transport to the fluid transfer station.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: August 24, 2010
    Assignee: Intelligent Hospital Systems Ltd.
    Inventors: Walter W. Eliuk, Ronald H. Rob, Lance R. Mlodzinski, Alex H. Reinhardt, Thom Doherty
  • Patent number: 7778744
    Abstract: A modular avionics system for an Unmanned Aerial Vehicle (UAV) has a control module that executes flight control and vertical and lateral guidance algorithms to generate control commands. A data link module communicates with a remote control station and receives control commands from the remote control station. A data acquisition module communicates with the control module and the data link module. The data acquisition module is configured to receive and process data from one or more onboard sensors and to actuate a plurality of servo motors in response to control commands. A switching module selectively couples the data acquisition module to the control module or to the data link module responsive to an input from the remote control station to respectively switch between a fully autonomous mode of UAV operation and a manual mode of UAV operation. Power may be provided by a power module.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: August 17, 2010
    Assignee: Honeywell International Inc.
    Inventors: Manaswini Rath, Yogesh Patel, Nitin Anand Kale, Mallikarjun Kande
  • Patent number: 7774132
    Abstract: In one embodiment, a navigation system provides navigation directions within particular locations within a facility, such as within a corporate campus, airport, resort, building, etc. The navigation system may respond to navigation requests for different types of facility target destinations such as a location, a person, a movable item, an event, or a condition. Different location resources can be accessed depending on the type of requested target destination. For example, an employee database may be used to locate an office within the facility associated with navigation request that contains an employee name. A natural voice communication scheme can be used to access to the navigation system through a larger variety of networks and communication devices.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: August 10, 2010
    Assignee: Cisco Technology, Inc.
    Inventor: Bradley Richard DeGrazia
  • Patent number: 7769489
    Abstract: A robot control device that controls operation of a robot having an actuator includes a casing, an actuator driver, a drive-control board, a main control board, a main power supply board, a vent passage, a cooling fan, and a holding member. The actuator driver is accommodated in the casing and drives the actuator. The drive-control board is accommodated in the casing and controls operation of the actuator driver. The main control board is accommodated in the casing and controls operation of the drive-control board. The main power supply board is accommodated in the casing and supplies a power to the drive-control board and the main control board. The vent passage is defined by at least the drive-control board, the main control board, and the main power supply board and has an end open to the exterior of the casing. The cooling fan is arranged at an end of the vent passage and causes the air to flow through the vent passage. The holding member is provided in the vent passage and holds the actuator driver.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: August 3, 2010
    Assignee: Seiko Epson Corporation
    Inventor: Ryosuke Teranaka
  • Patent number: 7765043
    Abstract: When first and second ignition switches are turned from on to off, a first or second CPU determines whether an abnormality has occurred in an electronically controlled brake system. When the first or second CPU determines that an abnormality has occurred, the first and second CPUs immediately turn off first and second main relays, respectively. When both the first and second CPUs determine that operation is normal and an occupant detection switch is off, the first and second CPUs keep the first and second main relays on for a predetermined period of time as a self-maintaining process during normal operation. In this self-maintaining process during normal operation, the period during which the first and second main relays are kept on is changed according to the voltage of a vehicle battery.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: July 27, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Toshikazu Kobayashi
  • Patent number: 7765058
    Abstract: A method of driver training to improve fuel economy performance of a vehicle, the method including, receiving selected vehicle and driver operating data indicative of driving conditions and operator inputs captured during previous vehicle operation, processing the received selected vehicle and driver operating data, and generating driving recommendations to improve fuel economy performance based on the processed vehicle and driver operating data.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: July 27, 2010
    Assignee: Ford Global Technologies, LLC
    Inventor: Jeff Doering