Patents Examined by Jophy S Koshy
  • Patent number: 11970756
    Abstract: The invention relates to an aluminum alloy having 0.04-0.1 wgt.-% Si, 0.8-1.8 wgt.-% Cu, 1.5-2.3 wgt.-% Mg, 0.15-0.6 wgt.-% Ag, 7.05-9.2 wgt.-% Zn, 0.08-0.14 wgt.-% Zr, 0.02-0.08 wgt.-% Ti, max. 0.35 wgt.-% Mn, max. 0.1 wgt.-% Fe, max. 0.06 wgt.-% Cr, optional 0.0015-0.008 wgt.-% Be, the remainder aluminum in addition to unavoidable impurities. The invention furthermore relates to an aluminum alloy product which is overaged according to T74xx, produced from such an alloy.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: April 30, 2024
    Assignee: OTTO FUCHS KOMMANDITGESELLSCHAFT
    Inventors: Joachim Becker, Matthias Hilpert, Thomas Witulski, Michael Besel
  • Patent number: 11970758
    Abstract: This hot-rolled steel sheet has a predetermined chemical composition. The metallographic structure at a sheet thickness ¼ depth from a surface and at a center position in a sheet width direction in a sheet width cross section parallel to a rolling direction contains, by area %, 77.0% to 97.0% of bainite and tempered martensite in total, 0% to 5.0% of ferrite, 0% to 5.0% of pearlite, 3.0% or more of residual austenite, and 0% to 10.0% of martensite. The average grain size of the metallographic structure excluding the residual austenite is 7.0 ?m or less. The C concentration in the residual austenite is 0.5 mass % or more. The number density of iron-based carbides having a diameter of 20 nm or more is 1.0×106 carbides/mm2 or more.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: April 30, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Hiroshi Shuto, Akifumi Sakakibara, Shinsuke Kai, Koutarou Hayashi, Hiroshi Kaido
  • Patent number: 11959151
    Abstract: Provided is a method for separating copper from nickel and cobalt, which is capable of efficiently and selectively separating copper, and nickel and cobalt from an alloy containing copper, nickel and cobalt such as a highly anticorrosive alloy that is obtained by subjecting a waste lithium ion battery to a dry treatment and contains copper, nickel and cobalt. According to the present invention, an alloy containing copper, nickel and cobalt is brought into contact with an acid in the coexistence of a sulfurization agent, thereby obtaining a solid that contains copper and a leachate that contains nickel and cobalt.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: April 16, 2024
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tatsuya Higaki, Hiroshi Takenouchi, Hiroshi Kobayashi, Satoshi Asano
  • Patent number: 11942246
    Abstract: A non-oriented electrical steel sheet of the present invention has a chemical composition capable of causing ?-? transformation, and contains 0.0005% to 0.0050% of Ti, in which, in a case where an area ratio of grains having a crystal orientation of an {hkl}<uvw> orientation (within a tolerance of 10°) when measured by EBSD is denoted as Ahkl-uvw, A411-011 is 15.0% or more, and the non-oriented electrical steel sheet has an average grain size of 10.0 ?m to 40.0 ?m.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: March 26, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Minako Fukuchi, Yoshiaki Natori, Tesshu Murakawa
  • Patent number: 11939641
    Abstract: A grain oriented electrical steel sheet includes the texture aligned with Goss orientation. In the grain oriented electrical steel sheet, when (?1 ?1 ?1) and (?2 ?2 ?2) represent deviation angles of crystal orientations measured at two measurement points which are adjacent on the sheet surface and which have an interval of 1 mm, the boundary condition BA is defined as [(?2??1)2+(?2??1)2+(?2??1)2]1/2?0.5°, and the boundary condition BB is defined as [(?2??1)2+(?2??1)2+(?2??1)2]1/2?2.0°, the boundary which satisfies the boundary condition BA and which does not satisfy the boundary condition BB is included.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: March 26, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shuichi Nakamura, Yusuke Kawamura, Shota Morimoto
  • Patent number: 11932931
    Abstract: The present invention relates to a hydrophilic metal thin film, which is formed by stacking a plurality of columnar structures. A plurality of tetrahedral structures is on the surface of the hydrophilic metal film, which is formed on the top of the columnar structures. The width of the tetrahedral structures is 15 nm to 120 nm. The hydrophilic metal thin film comprises: 35 to 95 at % of iron, 5 to 20 at % of chromium. The above-mentioned hydrophilic metal thin film is formed by magnetron sputtering method under the working pressure of argon gas ranging from 6 mTorr to 13 mTorr, and the sputtering time exceeds 20 minutes.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: March 19, 2024
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Pak-Man Yiu, Jhen-De You, Jinn Chu, Sung-Tsun Wang
  • Patent number: 11904416
    Abstract: Provided are a solder alloy, a solder powder, a solder paste, and a solder joint having a low liquidus temperature and not too low solidus temperature. The solder alloy has an alloy composition of, by mass: Ag: 2.0 to 4.0%; Cu: 0.51 to 0.79%; and Bi: more than 4.0% and 8.0% or less, with the balance being Sn. The solder alloy has a liquidus temperature of less than 217° C.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: February 20, 2024
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Yoshie Tachibana, Tomoki Sasaki, Norikazu Sakai, Yoshihiro Yamaguchi
  • Patent number: 11891674
    Abstract: Disclosed are a high-strength multiphase steel tinned raw plate and a manufacturing method therefor, wherein the mass percentages of the components of the multiphase steel tinned raw plate are: 0.081%-0.14% of C, 0.2%-0.8% of Mn, 0.01%-0.09% of Al, 0.01%-0.03% of P, 0.002%-0.015% of N, also containing one or more than one of 0.001%-0.005% of B, 0.005%-0.05% of Cr, 0.001%-0.1% of Ti, 0.001%-0.2% of Nb, 0.005%-0.03% of Cu, 0.001%-0.008% of Mo, and the balance of Fe and other inevitable impurities; and satisfy: 0.21%?Mn+1.3 Cr+3.2 Mo+0.5 Cu?0.91%. The tinned raw plate has a structure comprising ferrite grains, pearlite, martensite and cementite particles, wherein the total volume fraction of the pearlite, martensite and cementite particles is 5%-20%, the volume fraction of the martensite is 1%-5%, and the martensite has a solid solution content of carbon of ?0.07%.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: February 6, 2024
    Assignee: BAOSHAN IRON & STEEL CO., LTD.
    Inventors: Fuliang Lian, Gaofei Liang, Hongxing Chen, Shunli Zhao, Bijun Ban, Xiujun Li, Gang Xu
  • Patent number: 11890665
    Abstract: Provided is a metal gasket including, expressed in mass%, C: 0.10% or less, Si: 1.0% or less, Mn: 2.0% or less, P: 0.04% or less (including 0%), S: 0.01% or less (including 0%), Ni: 25.0-60.0%, Cr: 10.0-20.0%, either Mo or W alone, or both Mo+W/2: 0.05-5.0%, Al: more than 0.8% to 3.0% or less, Ti: 1.5-4.0%, Nb: 0.05-2.5%, V: 1.0% or less (including 0%), B: 0.001-0.015%, Mg: 0.0005-0.01%, S/Mg: 1.0 or less, N: 0.01% or less (including 0%), and O: 0.005% or less (including 0%), with the remainder being Fe and unavoidable impurities. The metal gasket has a metal structure in which a precipitate ?? phase having an average equivalent circle diameter of 25 nm or larger is not present within the austenite base.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: February 6, 2024
    Assignee: PROTERIAL, LTD.
    Inventors: Toshihiro Uehara, Junichi Nishida
  • Patent number: 11891680
    Abstract: A steel material according to the present disclosure has a chemical composition consisting of, in mass %: C: 0.15 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.01 to 1.00%, P: 0.030% or less, S: 0.0050% or less, Al: 0.005 to 0.100%, Cr 0.55 to 1.10%, Mo: 0.70 to 1.00%, Ti: 0.002 to 0.020%, V: 0.05 to 0.30%, Nb: 0.002 to 0.100%, B: 0.0005 to 0.0040%, N: 0.0100% or less, O: less than 0.0020%, and the balance being Fe and impurities, and satisfying Formula (1) described in the specification. A grain diameter of a prior-austenite grain is 15.0 ?m or less, and an average area of precipitate which is precipitated in a prior-austenite grain boundary is 12.5×10?3 ?m2 or less. A yield strength is 758 to 862 MPa.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 6, 2024
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yohei Otome, Hiroki Kamitani, Atsushi Soma, Taro Oe, Nobuaki Komatsubara, Yuji Arai, Hideki Takabe
  • Patent number: 11891679
    Abstract: A preparation method for high-strength and low-modulus ?-type Si-containing titanium alloy involves: preparing an alloy component with, in atomic percentage, 60-70% of Ti, 10-20% of Nb, 5-15% of Zr, 1-10% of Ta and 1-5% of Si and using sponge titanium, sponge zirconium, a tantalum-niobium intermediate alloy and silicon as raw materials, and then uniformly smelting the alloy components to obtain a solidified ingot; then, subjecting the resulting ingot to plastic deformation with a deformation temperature of 800-900° C. and a deformation rate of 60-80%, and water-quenching same to room temperature; and finally, heating the resulting test sample to a recrystallization temperature, maintaining the temperature for 1-4 h, and carrying out an annealing treatment and air-cooling same to room temperature to obtain the high-strength and low-modulus ?-type Si-containing titanium alloy. The resulting titanium alloy is more suitable for use as a medical implant material.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: February 6, 2024
    Assignee: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Yuanyuan Li, Weiwen Ye, Chao Yang, Fen Wang, Weiwen Zhang, Zhiyu Xiao
  • Patent number: 11879164
    Abstract: The invention concerns a process suitable for the recovery of platinum group metals (PGM) present in PGM-bearing catalysts comprising silicon carbide (SiC). More particularly, the process for the recovery of PGM present in PGM-bearing catalysts comprising SiC, comprises the steps of preparing a metallurgical charge by mixing the PGM-bearing catalysts with an Fe-oxide compound in an amount sufficient to oxidize at least 65% of the SiC, and feeding the metallurgical charge and slag formers to a smelting furnace operating in conditions susceptible to form a liquid Fe-based bullion, which contains PGM, and a liquid slag. Good to excellent PGM yields are obtained.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: January 23, 2024
    Assignee: UMICORE
    Inventors: Dirk Crauwels, Tim Van Rompaey, Hilke Verbruggen
  • Patent number: 11881338
    Abstract: A soft magnetic alloy comprising an internal area having a soft magnetic type alloy composition including Fe and Co, a Co concentrated area existing closer to a surface side than the internal area and having a higher Co concentration than in the internal area, a SB concentrated area existing closer to the surface side than the Co concentrated area and having a higher concentration of at least one element selected from Si and B than in the internal area, and a Fe concentrated area including Fe existing closer to the surface side than the SB concentrated area; wherein a crystalized area ratio of the SB concentrated area represented by SSBcry/SSB and a crystalized area ratio of the Fe concentrated area represented by SFecry/SFe, satisfy a relation of (SSBcry/SSB)<(SFecry/SFe).
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: January 23, 2024
    Assignee: TDK CORPORATION
    Inventors: Hironobu Kumaoka, Kazuhiro Yoshidome, Akito Hasegawa, Satoko Mori
  • Patent number: 11872656
    Abstract: A core material has a core 12; a solder layer 16 made of a (Sn—Bi)-based solder alloy provided on an outer side of the core 12; and a Sn layer 20 provided on an outer side of the solder layer 16. The core contains metal or a resin. When a concentration ratio of Bi contained in the solder layer 16 is a concentration ratio (%)=a measured value of Bi (% by mass)/a target Bi content (% by mass), or a concentration ratio (%)=an average value of measured values of Bi (% by mass)/a target Bi content (% by mass), the concentration ratio is 91.4% to 106.7%. The thickness of the Sn layer 20 is 0.215% or more and 36% or less of the thickness of the solder layer 16.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 16, 2024
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Shigeki Kondoh, Masato Tsuchiya, Hiroki Sudo, Hiroshi Okada, Daisuke Souma
  • Patent number: 11858072
    Abstract: A flux according to the present invention contains a rosin methyl ester in which the flux is a solid or solid-like flux at 25° C., and is used for an inside of a flux-cored solder or an exterior of a flux-coated solder.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: January 2, 2024
    Assignee: SENJU METAL INDUSTRY CO., LTD.
    Inventors: Yoko Kurasawa, Hiroaki Iseki, Kenta Nakajima
  • Patent number: 11858038
    Abstract: A process for the additive manufacture of a metallic and/or vitreous and/or ceramic component, a mixture of substrate particles and an at least two-phase binder is firstly provided. The mixture is preferably provided as composite particles, so that the substrate particles adhere to one another by the at least two-phase binder. The mixture is selectively melted layerwise by electromagnetic radiation so that a shaped part is additively produced. The shaped part is taken out from the mixture which has not been melted and the at least two-phase binder is subsequently removed, preferably successively. The process produces a microporous shaped part which after sintering leads to a component having a desired density and a desired mechanical and/or thermal stability.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: January 2, 2024
    Assignee: SKZ-KFE gGmbH
    Inventors: Christian Fischer, Christian Staudigel
  • Patent number: 11862369
    Abstract: Some variations provide a permanent-magnet structure comprising: a region having a plurality of magnetic domains and a region-average magnetic axis, wherein each of the magnetic domains has a domain magnetic axis that is substantially aligned with the region-average magnetic axis, and wherein the plurality of magnetic domains is characterized by an average magnetic domain size. Within the region, there is a plurality of metal-containing grains characterized by an average grain size, and each of the magnetic domains has a domain easy axis that is dictated by a crystallographic texture of the metal-containing grains. The region has a region-average easy axis based on the average value of the domain easy axis within that region. The region-average magnetic axis and the region-average easy axis form a region-average alignment angle that has a standard deviation less than 30° within the plurality of magnetic domains. Many permanent-magnet structures are disclosed herein.
    Type: Grant
    Filed: June 26, 2021
    Date of Patent: January 2, 2024
    Assignee: HRL Laboratories, LLC
    Inventors: Brennan Yahata, Eric Clough, Christopher Henry, Amber Sucich, Darby Laplant, Tobias Schaedler
  • Patent number: 11851726
    Abstract: A grain oriented electrical steel sheet includes the texture aligned with Goss orientation. In the grain oriented electrical steel sheet, when (?1 ?1 ?1) and (?2 ?2 ?2) represent deviation angles of crystal orientations measured at two measurement points which are adjacent on the sheet surface and which have an interval of 1 mm, the boundary condition BA is defined as |?2??1|?0.5°, and the boundary condition BB is defined as [(?2??1)2+(?2??1)2+(?2??1)2]1/2?2.0°, the boundary which satisfies the boundary condition BA and which does not satisfy the boundary condition BB is included.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 26, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shuichi Nakamura, Yusuke Kawamura, Shingo Okada, Tomoaki Ito, Shinya Yano
  • Patent number: 11845128
    Abstract: A powder bed material can include from 80 wt % to 100 wt % metal particles having a D50 particle size distribution value from 4 ?m to 150 ?m. From 10 wt % to 100 wt % of the metal particles can be surface-activated metal particles having in intact inner volume and an outer volume with structural defects. The structural defects can exhibit an average surface grain density of 50,000 to 5,000,000 per mm2.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: December 19, 2023
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: John Samuel Dilip Jangam, Thomas Anthony, Krzysztof Nauka, Kristopher J. Erickson
  • Patent number: 11846002
    Abstract: The high-strength steel sheet according to the present invention includes a specific chemical composition, a steel structure in which a total area fraction of martensite and bainite in a position of ¼ of a sheet thickness is 92% or more and 100% or less, the balance in a case where the total area fraction is not 100% contains retained austenite, and an area fraction of ferrite in a region extending up to 10 ?m in a sheet thickness direction from a surface is 10% or more and 40% or less, in which a tensile strength is 1320 MPa or more, and a Vickers hardness in a position of 15 ?m in the sheet thickness direction from the surface satisfies a specified formula.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 19, 2023
    Assignee: JFE STEEL CORPORATION
    Inventors: Shimpei Yoshioka, Yoshihiko Ono, Yuma Honda, Nobuyuki Nakamura