Patents Examined by Jose M Torres
  • Patent number: 12211610
    Abstract: Systems and methods are disclosed for using an integrated computing platform to view and transfer digital pathology slides using artificial intelligence, the method including receiving at least one whole slide image in a cloud computing environment located in a first geographic region, the whole slide image depicting a medical sample associated with a patient, the patient being located in the first geographic region; storing the received whole slide image in a first encrypted bucket; applying artificial intelligence to perform a classification of the at least one whole slide image, the classification comprising steps to determine whether portions of the medical sample depicted in the whole slide image are healthy or diseased; based on the classification of the at least one whole slide image, generating metadata associated with the whole slide image; and storing the metadata in a second encrypted bucket.
    Type: Grant
    Filed: September 6, 2023
    Date of Patent: January 28, 2025
    Assignee: Paige.AI, Inc.
    Inventors: Razik Yousfi, Peter Schueffler, Thomas Fresneau, Alexander Tsema
  • Patent number: 12211250
    Abstract: A vascular image processing method performed by a processor includes extracting, from a vascular image, a first vascular region corresponding to an entire blood vessel included in the vascular image, a second vascular region corresponding to a target vessel and one or more branch vessels connected to the target vessel, and a third vascular region corresponding to the target vessel, and predicting a vascular structure in the vascular image, based on the first vascular region, the second vascular region, and the third vascular region, which are extracted from the vascular image.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: January 28, 2025
    Assignee: MEDIPIXEL, INC.
    Inventors: Jihoon Kweon, Kyo Seok Song, Hwi Kwon, Se Yeong Park, Young-Hak Kim, Jee One Park, Young In Kim, Wan Yeong Kim, Yoo Jung Kim, Yun Hee Lee
  • Patent number: 12205408
    Abstract: This disclosure describes, in part, techniques for identifying interactions and events associated with inventory locations. For instance, system(s) may receive image data representing a user interacting with an inventory location. The system(s) may then generate heatmap data indicating a first portion of the image data that represents the inventory location and feature data indicating a second portion of the image data that represents the user. Next, the system(s) may analyze the heatmap data with respect to the feature data to determine that the second portion of the image data corresponds to the first portion of the image data. As such, the system(s) may determine that the user is interacting with the inventory location. Based on the determination, the system(s) may analyze the first portion of the image data to identify an event that occurs at the inventory location, such as the user removing an item.
    Type: Grant
    Filed: June 1, 2021
    Date of Patent: January 21, 2025
    Assignee: Amazon Technologies, Inc.
    Inventors: Venkataraman Santhanam, Ejaz Ahmed, Gregory Hager
  • Patent number: 12196833
    Abstract: Systems and methods for generative adversarial networks (GANs) to remove artifacts from undersampled magnetic resonance (MR) images are described. The process of training the GAN can include providing undersampled 3D MR images to the generator model, providing the generated example and a real example to the discriminator model, applying adversarial loss, L2 loss, and structural similarity index measure loss to the generator model based on a classification output by the discriminator model, and repeating until the generator model has been trained to remove the artifacts from the undersampled 3D MR images. At runtime, the trained generator model of the GAN can be generate artifact-free images or parameter maps from undersampled MRI data of a patient.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: January 14, 2025
    Assignees: Siemens Healthineers AG, The Regents of the University of California
    Inventors: Peng Hu, Xiaodong Zhong, Chang Gao, Valid Ghodrati
  • Patent number: 12200289
    Abstract: The present disclosure provides user interface methods of and systems for displaying at least one available action overlaid on an image, comprising displaying an image; selecting at least one action and assigning a ranking weight thereto based on at least one of (1) image content, (2) current device location, (3) location at which the image was taken, (4) date of capturing the image; (5) time of capturing the image; and (6) a user preference signature representing prior actions chosen by a user and content preferences learned about the user; and ranking the at least one action based on its assigned ranking weight.
    Type: Grant
    Filed: October 6, 2022
    Date of Patent: January 14, 2025
    Assignee: Adeia Guides Inc.
    Inventors: Murali Aravamudan, Ajit Rajasekharan
  • Patent number: 12190515
    Abstract: A method of operation of a compute system includes: detecting a skin area in a patient image; segmenting the skin area into a segmented image having an acne pimple at the center; generating a target pixel array from the segmented image includes separating a plurality of the acne pimples that are adjacent in the segmented image; identifying an acne characterization of the acne pimples including an area of each acne and an acne score; and assembling a user interface display from the acne characterization for displaying on a device.
    Type: Grant
    Filed: January 24, 2024
    Date of Patent: January 7, 2025
    Assignee: BelleTorus Corporation
    Inventors: Tien Dung Nguyen, Thi Thu Hang Nguyen, Léa Mathilde Gazeau, Tat Dat Tô, Dinh Van Han
  • Patent number: 12175671
    Abstract: According to the present application, a computer-implemented method of predicting thyroid eye disease is disclosed. The method comprising: preparing a conjunctival hyperemia prediction model, a conjunctival edema prediction model, a lacrimal edema prediction model, an eyelid redness prediction model, and an eyelid edema prediction model, obtaining a facial image of an object, obtaining a first processed image and a second processed image from the facial image, wherein the first processed image is different from the second processed image, obtaining predicted values for each of a conjunctival hyperemia, a conjunctival edema and a lacrimal edema by applying the first processed image to the conjunctival hyperemia prediction model, the conjunctival edema prediction model, and the lacrimal edema prediction model, and obtaining predicted values for each of an eyelid redness and an eyelid edema by applying the second processed image to the eyelid redness prediction model and the eyelid edema prediction model.
    Type: Grant
    Filed: July 14, 2023
    Date of Patent: December 24, 2024
    Assignee: THYROSCOPE INC.
    Inventors: Kyubo Shin, Jaemin Park, Jongchan Kim
  • Patent number: 12176096
    Abstract: Approaches for analyzing an input image and providing one or more outputs related to the input image are provided. In accordance with an exemplary embodiment, an input image may be received and analyzed, using a trained machine learning model, to generate an inference related to the image. Based, at least in part, upon the generated inference, one or more reports related to the inference can be generated and provided for presentation on a user device. A user can interact with the report in a conversational manner with the computer system to generate additional reports or insights related to the input image.
    Type: Grant
    Filed: March 25, 2024
    Date of Patent: December 24, 2024
    Assignee: Northwestern Memorial Healthcare
    Inventor: Mozziyar Etemadi
  • Patent number: 12148150
    Abstract: A method for determining a disease state prediction, relating to a potential disease or medical condition of a subject, includes accessing a set of subject images, the subject images capturing a part of a subject's body, and accessing a set of clinical factors from the subject. The clinical factors are collected by a device or a medical practitioner substantially contemporaneously with the capture of the subject images. The subject images are inputted into an image data model to generate disease metrics for disease prediction for the subject. The disease metrics generated by the image data model and the clinical factors are inputted into a classifier to determine the disease state prediction, and the disease state prediction is returned.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: November 19, 2024
    Assignee: Light AI Inc.
    Inventors: Peter Whitehead, Mahendran Maliapen, Sarbjit Sarkaria, Steven Rebiffé, Udit Gupta
  • Patent number: 12141962
    Abstract: In an method for training artificial intelligence entities (AIE) for abnormality detection, medical imaging data of the human organ is provided as training data having training samples, the medical imaging data including imaging results from different types of imaging techniques for each training sample of the training data, a pre-trained or randomly initialized AIE is provided, and the AIE is trained using the provided training samples. The training may include, for at least one training sample, a first loss function for a sub-structure of the AIE is calculated independently of a first spatial region of the human organ, and, for a training sample, a second loss function for a sub-structure of the AIE is calculated independently of a second spatial region of the human organ. The AIE may be trained using the calculated first loss function and the calculated second loss function.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: November 12, 2024
    Assignee: Siemens Healthineers AG
    Inventors: Xin Yu, Bin Lou, Bibo Shi, David Jean Winkel, Ali Kamen, Mamadou Diallo, Tongbai Meng, Afshin Ezzi
  • Patent number: 12137983
    Abstract: Systems and methods for designing and implementing patient-specific surgical procedures and/or medical devices are disclosed. In some embodiments, a method includes receiving a patient data set of a patient. The patient data set is compared to a plurality of reference patient data sets, wherein each of the plurality of reference patient data sets is associated with a corresponding reference patient. A subset of the plurality of reference patient data sets is selected based, at least partly, on similarity to the patient data set and treatment outcome of the corresponding reference patient. Based on the selected subset, at least one surgical procedure or medical device design for treating the patient is generated.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: November 12, 2024
    Assignee: Carlsmed, Inc.
    Inventors: Niall Patrick Casey, Michael J. Cordonnier, Justin Esterberg, Jeffrey Roh
  • Patent number: 12131521
    Abstract: This application relates to an image recognition technology in the field of computer vision of artificial intelligence, and provides an image classification method and apparatus. An example method includes obtaining an input feature map of a to-be-processed image, and then performing feature extraction processing on the input feature map based on a feature extraction kernel of a neural network to obtain an output feature map, where each of a plurality of output sub-feature maps is determined based on the corresponding input sub-feature map and the feature extraction kernel, at least one of the output sub-feature maps is determined based on a target matrix obtained after an absolute value is taken, and a difference between the target matrix and the input sub-feature map corresponding to the target matrix is the feature extraction kernel. The to-be-processed image is classified based on the output feature map to obtain a classification result of the to-be-processed image.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: October 29, 2024
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hanting Chen, Yunhe Wang, Chunjing Xu
  • Patent number: 12131469
    Abstract: Systems and methods are disclosed for grouping cells in a slide image that share a similar target, comprising receiving a digital pathology image corresponding to a tissue specimen, applying a trained machine learning system to the digital pathology image, the trained machine learning system being trained to predict at least one target difference across the tissue specimen, and determining, using the trained machine learning system, one or more predicted clusters, each of the predicted clusters corresponding to a subportion of the tissue specimen associated with a target.
    Type: Grant
    Filed: June 27, 2023
    Date of Patent: October 29, 2024
    Assignee: Paige.AI, Inc.
    Inventors: Rodrigo Ceballos Lentini, Christopher Kanan, Belma Dogdas
  • Patent number: 12125205
    Abstract: The present disclosure is for a system and a method for artificial intelligence (AI) based review of radiologic images as they are being read by a radiologist. The AI review is performed through the use of screen sharing and screen capture approaches allowing an AI model to analyze images without direct access to the raw image files. The AI review may compare user documented findings with AI model-based findings in order to identify discrepancies between the two. The discrepancies can be used as feedback for retraining the model and/or as feedback to the user to aid in education or track and/or improve an individual's review characteristics.
    Type: Grant
    Filed: November 10, 2023
    Date of Patent: October 22, 2024
    Assignee: Covera Health
    Inventors: Lawrence Ngo, Brian Blanchette, Jacob Johnson, Thomas Craig, Hongyi Zhang
  • Patent number: 12100151
    Abstract: Methods, systems, and apparatus for an imaging-based MicroOrganoSphere drug assay. In one aspect, a method includes obtaining image data of a well plate comprising a plurality of MicroOrganoSpheres; in response to applying a machine learning model configured to identify instances of at least some of the plurality of MicroOrganoSpheres in the image data, obtaining (i) indications indicative of each instance of the MicroOrganoSpheres and (ii) attributes of each instance of the MicroOrganoSpheres; and normalizing, based on the indications and the attributes, a well-to-well variation in the well plate.
    Type: Grant
    Filed: January 22, 2024
    Date of Patent: September 24, 2024
    Assignee: Xilis, Inc.
    Inventors: Xiling Shen, Zhaohui Wang, William Quayle, Garrett Jenkinson
  • Patent number: 12096986
    Abstract: In accordance with embodiments of this disclosure, a computational simulation platform comprises a computer-implemented method that includes: generating a mesh or meshless three-dimensional (3D) reconstruction of a vessel lumen and a surface of the vessel lumen based on invasive or non-invasive imaging; assigning material properties to the 3D reconstructed surface of the vessel lumen based on the invasive or non-invasive imaging; performing balloon pre-dilation, stenting and balloon post-dilation computational simulations with the 3D reconstructed vessel lumen and surface of the vessel lumen; and assessing stent and vessel morphometric and biomechanical measures based on the computational simulations.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: September 24, 2024
    Assignee: The Board of Regents of the University of Nebraska
    Inventor: Ioannis S. Chatzizisis
  • Patent number: 12100150
    Abstract: Methods, systems, and apparatus for an imaging-based MicroOrganoSphere drug assay. In one aspect, a method includes obtaining image data of a well plate comprising a plurality of MicroOrganoSpheres; in response to applying a machine learning model configured to identify instances of at least some of the plurality of MicroOrganoSpheres in the image data, obtaining (i) indications indicative of each instance of the MicroOrganoSpheres and (ii) attributes of each instance of the MicroOrganoSpheres; and normalizing, based on the indications and the attributes, a well-to-well variation in the well plate.
    Type: Grant
    Filed: August 17, 2023
    Date of Patent: September 24, 2024
    Assignee: Xilis, Inc.
    Inventors: Xiling Shen, Zhaohui Wang, William Quayle, Garrett Jenkinson
  • Patent number: 12086984
    Abstract: A method for capturing digital data for fabricating a dental splint involves displaying a GUI on a display of a smartphone that provides an alignment feature for a user to align a camera of the smartphone to a first position that captures teeth of a person, receiving digital video of the teeth, overlaying the alignment feature on the digital video of the teeth on the display to show alignment between the teeth and the alignment feature, capturing digital image information of the teeth while the alignment feature overlaps with the teeth, the captured digital image information including depth information, and transmitting the captured digital image information, including the depth information, from the smartphone for use in fabricating a dental splint.
    Type: Grant
    Filed: December 4, 2023
    Date of Patent: September 10, 2024
    Assignee: Asesso Health Inc.
    Inventor: William C. Cliff
  • Patent number: 12087429
    Abstract: Surgical planning systems that automatically identify one or a plurality of different candidate trajectories to a defined intrabody treatment region. The systems can rank the identified candidate trajectories in an order of hierarchy based on defined parameters such as distance from a critical no-go location and whether a single or multiple different candidate trajectories are needed to provide coverage of the defined intrabody treatment region. The surgical planning systems are also configured to provide a User Interface that defines a workflow for an image-guided surgical procedure and allows a user to select one or more of the identified candidate trajectories steps in the workflow.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: September 10, 2024
    Assignee: ClearPoint Neuro, Inc.
    Inventors: Timothy Neil Orr, Philip Bradley Hotte, Christian Richard Osswald
  • Patent number: 12087432
    Abstract: An apparatus for visualization of digitized glass slides belonging to a patient case having a processor and a memory communicatively connected to the processor, the memory containing instructions configuring the processor to receive an image data set having a plurality of images of one or more specimen and metadata of the plurality of images of the one or more specimen, identify one or more constituent virtualization components for each image of the plurality of images within image data set, determine a relationship between the one or more constituent visualization components as a function of the image data set, construct a plurality of virtual images as a function of the image data set and the relationship between the one or more virtual constituent components, wherein each of plurality of the images includes at least one virtual constituent component generate a consolidated virtual image as a function of the plurality of virtual images and display the consolidated virtual image.
    Type: Grant
    Filed: August 3, 2023
    Date of Patent: September 10, 2024
    Assignee: Pramana, Inc.
    Inventors: Manish Shiralkar, Prasanth Perugupalli, Jithin Prems, Raghubansh Bahadur Gupta, Durgaprasad Dodle, Prateek Jain, Shilpa G Krishna, Rohan Prateek, Priyanka Golchha, Jaya Jain, Asa Rubin, Parveen Shaik Gangirevula