Patents Examined by Joseph C Fritchman
  • Patent number: 12032102
    Abstract: Improved calibration of a vehicle sensor based on static objects detected within an environment being traversed by the vehicle is disclosed. A first sensor such as a LiDAR can be calibrated to a global coordinate system via a second pre-calibrated sensor such as a GPS IMU. Static objects present in the environment are detected such as signage. Point cloud data representative of the static objects are captured by the first sensor and a first transformation matrix for performing a transformation from a local coordinate system of the first sensor to a local coordinate system of the second sensor is iteratively redetermined until a desired calibration accuracy is achieved. Transformation to the global coordinate system is then achieved via application of the first transformation matrix followed by application of a second known transformation matrix to transition from the local coordinate system of the second pre-calibrated sensor to the global coordinate system.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: July 9, 2024
    Assignee: Pony AI Inc.
    Inventor: Cyrus F. Abari
  • Patent number: 12030083
    Abstract: Various methods and systems are provided for a multi-frequency transducer array. In one example, ground recovery in the transducer array is enabled by configuring an acoustic stack of the transducer array with an interdigitated structure, a top layer coupled to a front side of the interdigitated structure, and a bottom layer coupled to a back side of the interdigitated structure, where the top layer and the bottom is electrically continuous with the interdigitated structure.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: July 9, 2024
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Edouard Dacruz, Flavien Daloz, Jason Barrett
  • Patent number: 12013460
    Abstract: A LIDAR data clustering apparatus, a system including the same, and a method thereof are provided. The apparatus includes a processor that is configured to generate a voxel map including at least one point data based on a LIDAR and remove a road surface point from the at least one point data. The processor also clusters the at least one point data. A storage of the apparatus is configured to store data obtained by the processor and an algorithm for driving the processor.
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: June 18, 2024
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Mu Gwan Jeong
  • Patent number: 12007474
    Abstract: Techniques for autonomous vehicle operation using acoustic modalities include using one or more acoustic sensors of a vehicle to receive acoustic waves from one or more objects. The acoustic waves have multiple wavelengths. The acoustic waves are clustered into one or more acoustic clusters based on the plurality of wavelengths. A particular acoustic cluster of the one or more acoustic clusters is selected based on signal processing of the one or more acoustic clusters. A particular object is associated with the particular acoustic cluster. An acoustic fingerprint of the particular object is generated based on the particular acoustic cluster. Characteristics of the particular object are determined based on the acoustic fingerprint of the particular object. A control circuit of the vehicle is used to operate the vehicle to avoid a collision with the particular object based on the characteristics of the particular object.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: June 11, 2024
    Assignee: Motional AD LLC
    Inventors: Aravindkumar Vijayalingam, Abhimanyu Singh
  • Patent number: 12007482
    Abstract: An optical proximity sensor comprises a solid-state photo-electric converter, a biasing circuit for biasing the solid-state photo-electric converter, and a drive circuit. The drive circuit is configured to control the biasing circuit to apply to the photo-electric converter a bias signal modulated between a first value and a second value, the second value different from the first value, wherein a modulated optical signal is emitted by the solid-state photo-electric converter towards a target object. The drive circuit is configured to receive an electrical output signal from the solid-state photo-electric converter, the electrical output signal being a function of a modulated optical signal received at the solid-state photo-electric converter as a result of reflection of the emitted modulated optical signal at the target object.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: June 11, 2024
    Assignee: STMICROELECTRONICS S.r.l.
    Inventor: Delfo Nunziato Sanfilippo
  • Patent number: 12007512
    Abstract: A system for analysis of sonar data is provided comprising sonar transducer assembl(ies), processor(s), and a memory. The memory includes computer program code that is configured to, when executed, cause processor(s) to receive sonar data, where an object is represented within sonar data, and additional data from a data source other than the sonar transducer assembl(ies). The processor(s) further determine object characteristic(s) of the object using sonar data and additional data, and determine an estimated object-type for the object represented within sonar data using the object characteristic(s). The processor(s) further generate a sonar image based on sonar data, cause display of the sonar image, and cause provision of an indication of the estimated object-type so that the indication of the estimated object-type is correlated to the object representation in the sonar image.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: June 11, 2024
    Assignee: Navico, Inc.
    Inventors: Karl Thomas Neumann, Jeremiah Clark
  • Patent number: 12000932
    Abstract: A LIDAR system includes a LIDAR unit. The LIDAR unit includes a housing defining a cavity. The LIDAR unit further include a plurality of emitters disposed on a circuit board within the cavity. Each of the emitters emits a laser beam along a transmit path. The LIDAR system further includes a first optic rotatable about a first axis at a first rotational speed and a second optic rotatable about a second axis at a second rotational speed that is faster than the first rotational speed. The first optic is positioned relative to the LIDAR unit such that a plurality of laser beams exiting the LIDAR unit pass through the first optic. The second optic is positioned relative to the first optic such that each of a plurality of refracted laser beams exiting the prism disk reflect off of the second optic.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: June 4, 2024
    Assignee: UATC, LLC
    Inventors: Michael Bryan Borden, Daniel Thomas Sing, Adam David Kenvarg
  • Patent number: 11988774
    Abstract: Embodiments relating to an integrated photonics air data system are disclosed. A light beam from a laser source is routed to a plurality of tunable optical filters operative to transmit the light beam to one of a plurality of emitting grating couplers at any given time. The tunable optical filters are configured such that the light beam is emitted into the region of interest at different times from each of the emitting grating couplers. A passive optical filter array is configured to receive scattered light from the emitted light beam. The passive optical filter array comprises a plurality of optical notch filters operative for frequency selection, and a plurality of optical detectors each respectively coupled to an output of one of the optical notch filters. The passive optical filter array is operative to perform frequency spectrum decomposition of the received scattered light into a plurality of signals.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 21, 2024
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Steven Tin, Chad Fertig
  • Patent number: 11982744
    Abstract: An operating method for a LIDAR system. An optical multipulse signal with multiple temporally separate peaks and temporally superimposed peak flanks of temporally directly succeeding peaks is generated on the transmitter side, and is emitted into a visual field as an optical transmission signal. A corresponding control unit, a LIDAR system, and a working device, in particular a vehicle, are also described.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 14, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Markus Hippler, Martin Kastner
  • Patent number: 11982772
    Abstract: Improved calibration of a vehicle sensor based on static objects detected within an environment being traversed by the vehicle is disclosed. A first sensor such as a LiDAR can be calibrated to a global coordinate system via a second pre-calibrated sensor such as a GPS IMU. A static object present in the environment is detected such as signage. A type of the detected object is determined from static map data. Point cloud data representative of the static object is captured by the first sensor and a first transformation matrix for performing a transformation from a local coordinate system of the first sensor to a local coordinate system of the second sensor is iteratively redetermined until a desired calibration accuracy is achieved. Transformation to the global coordinate system is then achieved via application of the first transformation matrix followed by a second known transformation matrix.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 14, 2024
    Assignee: Pony AI Inc.
    Inventor: Cyrus F. Abari
  • Patent number: 11982770
    Abstract: Various embodiments of the present technology may provide methods and apparatus for region of interest histogramming. The apparatus may use a state machine in conjunction with a memory to generate a first histogram having a fixed number of bins over a first range and generate a second histogram having the fixed number of bins over a region of interest selected based on the first peak of the first histogram.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 14, 2024
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Colin Barry, Steven John Buckley, Aidan Browne
  • Patent number: 11977157
    Abstract: The optical distance measurement device is configured to include an optical interference unit for separating the reflected light into a reflected light of a first polarized wave and a reflected light of a second polarized wave, extracting first and second components orthogonal to each other from an interference light of the reflected light of the first polarized wave and the reference light, and extracting third and fourth components orthogonal to each other from an interference light of the reflected light of the second polarized wave and the reference light, and a polarization rotation unit for acquiring one or more components of horizontal and vertical components of a polarized wave by rotating a polarization angle of a first complex signal having the first and second components and a polarization angle of a second complex signal having the third and fourth components, so that a distance calculation unit calculates, on the basis of the components acquired by the polarization rotation unit, a difference bet
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: May 7, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kiyoshi Onohara, Hiroki Goto
  • Patent number: 11971505
    Abstract: A method includes counting a first set of photons having times of flight that falls within a first time range and being detected during a first time period, determining a second time range based on the first set of photons, the second time range being smaller than the first time range, counting a second set of photons having times of flight that fall within the second time range and being detected during a second time period, and determining a third time range based on the second set of photons, the third time range being smaller than the second time range.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: April 30, 2024
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventor: Pascal Mellot
  • Patent number: 11965981
    Abstract: A light-source device includes a plurality of light emitters; and a plurality of optical elements through which laser beams emitted from the plurality of light emitters pass. The plurality of optical elements includes: a first optical element configured to emit a laser beam of a first divergence angle; and a second optical element configured to emit a laser beam of a second divergence angle smaller than the first divergence angle.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: April 23, 2024
    Assignee: RICOH COMPANY, LTD.
    Inventors: Yusuke Ohta, Takumi Satoh
  • Patent number: 11962900
    Abstract: In some embodiments, a ToF sensor includes an illumination source module, a transmitter lens module, a receiver lens module, and an integrated circuit that includes a ToF imaging array. The ToF imaging array includes a plurality of SPADs and a plurality of ToF channels coupled to the plurality of SPADs. In a first mode, the ToF imaging array is configured to select a first group of SPADs corresponding to a first FoV. In a second mode, the ToF imaging array is configured to select a second group of SPADs corresponding to a second FoV different than the first FoV.
    Type: Grant
    Filed: August 20, 2020
    Date of Patent: April 16, 2024
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventors: Neale Dutton, Stuart McLeod, Bruce Rae
  • Patent number: 11962355
    Abstract: A signal processing device (1) includes a first medium (2), a second medium (3) and a lipid interface (4) arranged between the first medium and the second medium. The lipid interface includes multiple lipid molecules (5). An input transducer (8) is arranged to apply an input signal to the lipid interface to generate a mechanical pulse in the lipid interface. An output transducer (9) is arranged to receive an output signal by detecting a mechanical response (14) in the lipid interface from the mechanical pulse generated in the lipid interface by the input transducer.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: April 16, 2024
    Assignee: APOHA LIMITED
    Inventor: Shamit Shrivastava
  • Patent number: 11947007
    Abstract: Systems and methods for determining a location of an object within a sonar beam zone are detailed herein. A system for presenting marine data includes at least one sonar transducer associated with a watercraft, a display, processor(s), and a memory including a computer program code. The sonar transducer emits sonar beams into an underwater environment defining a beam shape. The program code, when executed, causes, on the display, presentation of a chart and a representation of the watercraft; and determines, based on the beam shape corresponding to the sonar transducer, a sonar beam zone corresponding to a sonar coverage of the underwater environment of the body of water. The program code further receives sonar return data and determines a position of an object within the sonar beam zone, and causes, on the display, presentation of the sonar beam zone and an indication of the object within the sonar beam zone.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: April 2, 2024
    Assignee: NAVICO, INC.
    Inventor: Mathew J. Hooper
  • Patent number: 11940565
    Abstract: In one embodiment, a lidar system includes a light source configured to emit (i) local-oscillator light and (ii) pulses of light, where each emitted pulse of light is coherent with a corresponding portion of the local-oscillator light. The lidar system also includes a receiver configured to detect the local-oscillator light and a received pulse of light, the received pulse of light including light from one of the emitted pulses of light that is scattered by a target located a distance from the lidar system. The local-oscillator light and the received pulse of light are coherently mixed together at the receiver. The lidar system further includes a processor configured to determine the distance to the target based at least in part on a time-of-arrival for the received pulse of light.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 26, 2024
    Assignee: Luminar Technologies, Inc.
    Inventors: Joseph G. LaChapelle, Jason M. Eichenholz, Alex Michael Sincore
  • Patent number: 11940571
    Abstract: A method of operating a light detection and ranging (LIDAR) system is provided that includes generating a beam of polarized light; and transforming a polarization state of the beam of polarized light at a rate faster than a rate of data collection at a plurality of detectors configured to detect light reflected from a target for the purpose of speckle-reduction.
    Type: Grant
    Filed: December 12, 2019
    Date of Patent: March 26, 2024
    Assignee: Aeva, Inc.
    Inventors: Neal N. Oza, Omer P. Kocaoglu, Behsan Behzadi, Oguzhan Avci, Keith Gagne, Mina Rezk
  • Patent number: 11933927
    Abstract: A seismic sensor assembly can include a housing that defines a longitudinal axis; a sensor; sensor circuitry operatively coupled to the sensor; and overvoltage protection circuitry electrically coupled to the housing.
    Type: Grant
    Filed: March 3, 2023
    Date of Patent: March 19, 2024
    Assignee: Schlumberger Technology Corporation
    Inventor: Ole Oeverland