Abstract: An image input apparatus for sequentially obtaining a plurality of partial images which are portions of an image of an object, by relatively moving the object and a sensor having a plurality of pixel circuit units, including a drive circuit which effects control so as to store photoelectric charge en bloc at photoelectric conversion units respectively included in the plurality of pixel circuit units, then blanket-transfer optical signals of the photoelectric conversion units respectively included in the plurality of pixels to memory units included in the corresponding pixel circuit units, and then read the photoelectric signals, and noise signals generated in the pixel circuit units in this order from the pixel circuit units.
Abstract: An electronic database for image interpolation is generated by a computer. The computer generates a low-resolution image from a training image, a plurality of representative vectors from the low-resolution image, and a plurality of interpolation filters corresponding to each of the representative vectors. The interpolation filters and the representative vectors are generated off-line and can be used to perform image interpolation on an image other than the training image. The database can be stored in a device such as computer or a printer.
Type:
Grant
Filed:
April 21, 1998
Date of Patent:
October 15, 2002
Assignee:
Hewlett-Packard Company
Inventors:
C. Brian Atkins, Charles A. Bouman, Jan P. Allebach
Abstract: A prospective abnormal pattern is detected in accordance with one of image signals representing radiation images of the right and left mammae of an object. A region of the detected prospective abnormal pattern in one radiation image, which is represented by the one image signal, and a region in the other mamma radiation image, which region corresponds to the position of the region of the detected prospective abnormal pattern in the one radiation image, are set. Iris filter processing is carried out on image signal components, which represent picture elements located in the region of the detected prospective abnormal pattern in the one radiation image, and on image signal components, which represent picture elements located in the region in the other mamma radiation image. Iris filter output signals are thereby obtained. A calculation is made to find a difference value between the iris filter output signals, which have been obtained with respect to corresponding picture elements in the regions.
Abstract: The invention relates to a method of determining the spatial transformation between an object which is three-dimensionally reproduced by a data set and the object itself. According to the method at least one X-ray image of the object is formed. A pseudo-projection image is calculated for a part of the volume represented by the data set, said pseudo-projection image being compared with the X-ray image. The parameters on which the calculation of the pseudo-projection image is based are varied until optimum registration is achieved.
Type:
Grant
Filed:
February 5, 1998
Date of Patent:
November 7, 2000
Assignee:
U.S. Philips Corporation
Inventors:
Jurgen Weese, Thorsten Buzug, Graeme P. Penney, David J. Hawkes
Abstract: Rapid processing of color print data so as to replace true black ink with process black ink, so as to minimize bleeding between colored regions of a printed document and black regions thereof. To replace black with process black in a raster line, multiple pixels are examined simultaneously in groups so as to determine whether the group contains at least one colored pixel, with the exact location of the colored pixel being obtained thereafter. The last color pixel in the raster line is obtained by inspecting each Nth subsequent pixel, thereby skipping N between inspections, until a first black pixel is encountered, and thereafter backtracking to obtain the first color pixel. Thereafter, all black pixels within a window marked by the first and last color pixels, plus a margin, are replaced with process black.
Abstract: A handwritten test symbol, such as an alphabetic character, a word or a signature, written on a digitizing tablet is normalized by comparison with a model symbol to determine the transformation necessary to best fit the test symbol to the model symbol. Such transformation is then applied to normalize the test symbol. Shape information in the test symbol is preserved during such normalization. In accordance with one aspect of the invention, the model symbol is a line segment. In accordance with another aspect of the invention, the model symbol is an example of the symbol being normalized. Such normalization can be used as a preprocessing step in applications such as character recognition, text recognition or signature verification.