Patents Examined by Joseph O Nyamogo
  • Patent number: 11953534
    Abstract: The present disclosure pertains to systems and methods for detecting lightning and using such information to implement appropriate control strategies in an electric power system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions associated with at least a portion of the electric power system. The system may also include a traveling wave subsystem to identify an initial traveling wave in the electric power system and generated by lightning and identify at least one subsequent traveling wave in the electric power system and generated by lightning. A lightning analysis subsystem may perform an analysis of the initial traveling wave and the at least one subsequent traveling wave to determine a characteristic of the ionosphere based on the analysis and a lightning location. An adaptive control subsystem may adjust a control strategy based on the lightning location.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: April 9, 2024
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventor: Cody W. Tews
  • Patent number: 11953396
    Abstract: A rotation angle detection device includes a correction-object driven gear that is a driven gear meshing with a main driving gear, a first sensor that is configured to generate an electrical signal based on rotation of the correction-object driven gear, and an electronic control unit that computes a driven-side rotation angle based on the electrical signal. The electronic control unit is configured to store a correction angle used to correct the driven-side rotation angle when computing the driven-side rotation angle. The correction angle is a predetermined deviation in a predetermined angle domain obtained as an average value in which deviations of the number equal to the integer and corresponding to a same relative rotation angle is averaged, so as to be deviation in an angle domain of 0 to 360 degrees.
    Type: Grant
    Filed: January 14, 2021
    Date of Patent: April 9, 2024
    Assignee: JTEKT CORPORATION
    Inventor: Yuichi Toyama
  • Patent number: 11953529
    Abstract: Position sensing modules associated with a device are provided. The position sensing modules are configured to receive electrical characteristics associated with one or more switches of a device over a predetermined period of time, the one or more switches being configured to connect service to or disconnect service from a customer; calculate a match indicator for each phase of the device including the one or more switches, the match indicator indicating whether an electrical characteristic on a load-side of the device matches a same electrical characteristic on a line-side of the device for each phase of the device; and determine a position of the one or more switches based on the received electrical characteristics and the calculated match indicator for each phase of the device.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: April 9, 2024
    Assignee: Sensus Spectrum, LLC
    Inventors: Matthew James Savarda, Michael Ray Brown, Andrew James Bryce Dudding
  • Patent number: 11940342
    Abstract: The described techniques are directed to inductive torque sensors that implement independent target coil and pickup coil systems. By utilizing the various principles of inductive angle sensors, and as a result of the specific physical arrangement of target coils, the inductive torque sensor may independently obtain a rotational position (i.e., mechanical angle) of the rotatable input shaft via one pickup coil system, and a rotational position (i.e., mechanical angle) of the rotatable output shaft via another pickup coil system. Combiner circuitry is also provided to calculate the torsion angle using the signals induced in each of two separate pickup coil systems. By using different k-fold symmetry periodicities in the target coils with respect to the coil configurations, the inductive torque sensor advantageously reduces or eliminates mutual coupling between the different target coil systems and provide robustness to stray or external electromagnetic fields.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: March 26, 2024
    Assignee: Infineon Technologies AG
    Inventor: Udo Ausserlechner
  • Patent number: 11889900
    Abstract: A foot presence sensor system for an active article of footwear can include a sensor housing configured to be disposed at or in an insole of the article, and a controller circuit, disposed within the sensor housing, configured to trigger one or more automated functions of the footwear based on a foot presence indication. In an example, the sensor system includes a capacitive sensor configured to sense changes in a capacitance signal in response to proximity of a body. A dielectric member can be provided between the capacitive sensor and the body to enhance an output signal from the sensor.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: February 6, 2024
    Assignee: NIKE, Inc.
    Inventors: Steven H. Walker, Phillip Meneau
  • Patent number: 11885843
    Abstract: A method, system and apparatus for fault detection in line protection for a power transmission system.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: January 30, 2024
    Assignee: Hitachi Energy Ltd.
    Inventor: Kai Liu
  • Patent number: 11879905
    Abstract: Systems and methods for determining fluid density include receiving calibration data for a fluid density measurement tool. The fluid density measurement tool can include a cantilever beam and at least one strain sensor that is coupled to the cantilever beam. The cantilever beam can be housed in the fluid density measurement tool and is buoyed by a fluid that enters the fluid density measurement tool. The systems and methods measure strain values at the at least one strain sensor and determine a density of the fluid based on the calibration data, and the strain values measured at the at least one strain sensor.
    Type: Grant
    Filed: September 17, 2019
    Date of Patent: January 23, 2024
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James Dan Vick, Jr., Michael Linley Fripp
  • Patent number: 11877864
    Abstract: Pressure sensors that can be reliability operated with the maximum current flowing through the device restricted to 10 uA or below, or below 50 uA in a single-fault condition. This can provide at least a reduced need for the final medical device architect to consider potential risks from excessive current to the patient, simplifying the design and manufacturability of the medical device. An additional benefit is that the sensors are generally more accurate at lower current flow, as self-heating of the resistors and parasitic leakages are reduced, if the signal-to-noise problem is resolved.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: January 23, 2024
    Assignee: MEASUREMENT SPECIALTIES, INC.
    Inventor: Craig A. Keller
  • Patent number: 11874142
    Abstract: A coupling and control assembly including a non-contact, inductive displacement sensor is provided. The assembly includes a controllable coupling assembly including first and second coupling members supported for rotation relative to one another about a rotational axis. The first coupling member has a first coupling face which has a sensor pocket which receives the sensor. A control member made of an electrically conductive material is mounted for controlled, small-displacement, shifting movement relative to the sensor. The sensor is configured to create a magnetic field to induce eddy currents in the electrically conductive material of the control member wherein shifting movement of the control member changes a magnetic field caused by the eddy currents. The sensor provides a position feedback signal for vehicle transmission control, wherein the signal is correlated with the position of the control member.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: January 16, 2024
    Assignee: MEANS INDUSTRIES, INC.
    Inventor: Ryan W. Essenmacher
  • Patent number: 11860212
    Abstract: A computer monitors a status of grid devices using sensor measurements. Sensor data is clustered using a predefined grouping distance value to define one or more sensor event clusters. A plurality of monitored devices is clustered using a predefined clustering distance value to define one or more asset clusters. A location is associated with each monitored device of the plurality of monitored devices. A distance is computed between each sensor event cluster and each asset cluster. When the computed distance is less than or equal to a predefined asset/sensor distance value for a sensor event cluster and an asset cluster, an asset identifier of the asset cluster associated with the computed distance is added to an asset event list. For each asset cluster included in the asset event list, an asset location of an asset is shown on a map in a graphical user interface presented in a display.
    Type: Grant
    Filed: June 26, 2023
    Date of Patent: January 2, 2024
    Assignee: SAS INSTITUTE INC.
    Inventors: Thomas Dale Anderson, Priyadarshini Sharma, Mark Joseph Konya, Yuwei Liao
  • Patent number: 11841394
    Abstract: A circuit is provided, comprising a transformer having a first coil that is arranged on a substrate and a second coil that is arranged on the substrate above the first coil, and a dielectric between the first coil and the second coil. The circuit furthermore comprises a guard ring around the transformer. The circuit furthermore comprises a diagnostic circuit (55) that is configured so as to ground the guard ring in a normal operating mode and to measure a measurement voltage or a measurement current at a measurement impedance between the guard ring and the ground potential in a diagnostic operating mode.
    Type: Grant
    Filed: October 12, 2020
    Date of Patent: December 12, 2023
    Assignee: Infineon Technologies AG
    Inventors: Marcus Nuebling, Jaafar Mejri
  • Patent number: 11796434
    Abstract: A scratch tester has at least one cutter that moves simultaneously both rotationally and axially relative to the rock it is cutting. When rotational and axial movements are constant, the cutter generates a helical groove in the rock. In borehole embodiments, the scratch tester is fixed at a desired location using centralizers, and the cutter is provided on a motorized platform/track that translates between the centralizers and rotates around a central axis. The cutter faces outward and extends via a cutter arm to engage and carve a helical groove in the borehole wall. A laboratory scratch tester includes a holder for a solid cylindrical core sample and a motorized translating frame on which a cutter extends. The cutter is directed toward the core sample, and the holder with the core sample is rotated by a motor so that as the cutter translates relative thereto, a helical groove is cut thereinto.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: October 24, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Mohammed Badri, Devon Gwaba, Gallyam Aidagulov, Mustapha Abbad, Salah Mohammed Al-Ofi
  • Patent number: 11726129
    Abstract: A method for determining direction of an earth fault (EF) in a feeder of a high impedance grounded power system can be performed by an Intelligent Electronic Device (IED). The method includes obtaining a measure of a first order harmonic active current component derived from residual voltage and current of the feeder when the EF occurred in the feeder, obtaining a measure of a higher order harmonic reactive current component derived from the residual voltage and current of the feeder when the EF occurred in the feeder, and determining the direction of the EF in the feeder based on a combination of the first order harmonic active current component and the higher order harmonic reactive current component.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: August 15, 2023
    Assignee: HITACHI ENERGY SWITZERLAND AG
    Inventor: Zoran Gajic
  • Patent number: 11693062
    Abstract: A method for processing a direct current electric arc and an apparatus, includes: obtaining a first current which is a direct current input current of a direct current cable of a photovoltaic cell system; obtaining a second current, where the second current is a direct current common mode current of a direct current cable or an alternating current common mode current of an alternating current cable; calculating a correlation coefficient between a frequency domain component of the first current and a frequency domain component of the second current; and when determining that the first current meets an electric arc occurrence condition and the correlation coefficient is greater than or equal to a preset coefficient threshold, skipping sending a direct current electric arc fault alarm. The correlation coefficient is used to reflect a proportion of common mode noise generated by the second current, and the preset coefficient threshold is set.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: July 4, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Fangcheng Liu, Kai Xin, Yunfeng Liu
  • Patent number: 11680977
    Abstract: Systems and methods for identifying a fault condition in an Ungrounded Electrical Distribution (UED) system, the system receives measurements with instantaneous values and effective values associated when a fault event is identified, measured transient waveforms and a fault type. A processor applies an empirical mode decomposition to the measured transient waveforms to extract a dominant vibration mode and an associated derived waveform corresponding to the dominant vibration mode. A Hilbert transform is applied to the associated derived waveform to obtain a set of feature attributes. Subsets are computed from the set, at a pre-fault time, at a fault inception time, and at a post-fault time, and inputted into the fault type trained neural network model. An output of the model are locational parameters used to determine a fault section, a fault line segment and a fault location point with a topology connectivity analysis of the UED system.
    Type: Grant
    Filed: March 18, 2020
    Date of Patent: June 20, 2023
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventor: Hongbo Sun
  • Patent number: 11680863
    Abstract: A method for reducing hysteresis error and high frequency noise error of capacitive tactile sensors includes the following steps: step 1: calibration, specifically including positive stroke calibration to form n positive stroke curves and negative stroke calibration to form n negative stroke curves; step 2: averaging, specifically including positive stroke averaging to form an average positive stroke curve, negative stroke averaging to form an average negative stroke curve, and comprehensive averaging to form a comprehensive stroke curve; step 3: fitting modeling, to obtain a positive stroke fitting function, a negative stroke fitting function, and a comprehensive fitting function; step 4: measurement; step 5: noise filtering; step 6: stroke direction discrimination; and step 7: resolving, to obtain the force at the current time by using a corresponding fitting function based on the stroke direction discrimination result.
    Type: Grant
    Filed: July 1, 2020
    Date of Patent: June 20, 2023
    Assignee: SOUTHEAST UNIVERSITY
    Inventors: Aiguo Song, Shuyan Yang, Baoguo Xu, Huijun Li, Hong Zeng, Lifeng Zhu
  • Patent number: 11656263
    Abstract: Effective feature set-based high impedance fault (HIF) detection is provided. Systems, methods and devices described herein present a systematic design of power feature extraction for HIF detection and classification. For example, power features associated with HIF events are extracted according to when a fault happens, how long it lasts, and the magnitude of the fault. Complementary power expert information is also integrated into feature pools. In another aspect, a ranking procedure is deployed in a feature pool for balancing information gain and complexity in order to avoid over-fitting of features. In aspects described herein, a logic-based HIF detector implements HIF feature extraction. To determine when an HIF occurs, the HIF detector calculates different quantities, such as active power and reactive power, based on a voltage and current time series, and uses the derivative of these quantities to tell when there is a potential change due to HIF.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: May 23, 2023
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Qiushi Cui, Yang Weng, Khalil El-Arroudi, Syed Muhammad Yousaf Hashmy
  • Patent number: 11592467
    Abstract: An input circuit for reading in an analog input signal of a sensor comprises: first and second input ports connectable to the sensor; a first current-measuring signal converter connected to the first input port and comprising a current-measuring apparatus to determine a first output signal from the analog input signal; a current-limiting apparatus inside the first current-measuring signal converter for limiting a maximum current flowing through the first current-measuring signal converter; and a second current-measuring signal converter connected to the second input port and comprising a current-measuring apparatus to determine a second output signal from the analog input signal, wherein the first and second current-measuring signal converters are connected in series; and a testing apparatus for comparing the first and second output signals to detect faults of the first and second current-measuring signal converters in response to deviations between the first and second output signals exceeding a limit value.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: February 28, 2023
    Assignee: Pilz GmbH & Co. KG
    Inventors: Richard Veil, Bernd Harrer
  • Patent number: 11586267
    Abstract: Embodiments of the present disclosure relate to managing power provided to a semiconductor circuit to prevent undervoltage conditions. A measured voltage value describing a measured supply voltage at a first subcircuit of a semiconductor circuit can be received, the measured voltage value having a first resolution. A selected metric indicative of a supply voltage present at the first subcircuit can be received, the selected metric having a second resolution higher than the first resolution. The selected metric is calibrated to obtain a calibrated metric when a transition of the measured voltage value occurs.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: February 21, 2023
    Assignee: International Business Machines Corporation
    Inventors: Thomas Strach, Preetham M. Lobo, Tobias Webel
  • Patent number: 11585717
    Abstract: In a substrate processing system according to an exemplary embodiment, gas supply units are configured to supply gases to chambers through first gas flow channels thereof, respectively. Chamber pressure sensors are configured to measure pressures in the chambers. A second gas flow channel is connected to the first gas flow channel of each of the gas supply units. A reference pressure sensor is configured to measure a pressure in the second gas flow channel. In a method according to an exemplary embodiment, each of the chamber pressure sensors is calibrated by using a measurement value thereof and a measurement value of the reference pressure sensor which are obtained in a state where pressures in a corresponding chamber, the first gas flow channel of a corresponding gas supply unit, and the second gas flow channel are maintained.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: February 21, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Risako Matsuda, Norihiko Amikura, Kazuyuki Miura, Keita Shouji