Patents Examined by Joseph P. Martinez
  • Patent number: 11867918
    Abstract: A light source apparatus can avoid double-counting of particles in a flow cytometer for measuring and analyzing a plurality of particles flowing in a flow cell. A light source apparatus for a flow cytometer includes a semiconductor laser for emitting a laser beam, a collimating lens for collimating the laser beam emitted from the semiconductor laser in a spread light state, a first beam conversion unit composed of prisms and a second beam conversion unit composed of prisms for matching a flow cell length direction with a slow axis direction of the collimated laser beam in a flow cell after reducing the beam diameter in a fast axis direction and increasing the beam diameter in the slow axis direction, and a focusing lens for focusing the laser beam passed through these beam conversion units in the flow cell.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: January 9, 2024
    Assignee: KYOCERA SOC Corporation
    Inventors: Satoshi Nakao, Masami Hatori, Kenji Ohara, Isao Masukawa
  • Patent number: 11860347
    Abstract: A zoom lens includes, in order from an object side to an image side, a first lens unit configured not to move for zooming, a plurality of zooming lens units configured to move in zooming, a front relay lens unit configured not to move for zooming, an extender lens unit insertable into and removable from an optical path for changing a focal length range of the zoom lens, and a rear relay lens unit configured not to move for zooming, and satisfies specific conditional expressions.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: January 2, 2024
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Kazufumi Goto
  • Patent number: 11860500
    Abstract: An integrated computerized control system is capable of automating phases of electrochromic glass configuration, commissioning and control using a database synchronized between a provider side (e.g. manufacturer) and a customer side (e.g. installation location). The control system may support an on-site commissioning process that better ensures that each particular piece of electrochromic glass is correctly matched to glass-specific information used to configure a respective controller to control the particular piece of glass having particular characteristics.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: January 2, 2024
    Assignee: SAGE Electrochromics, Inc.
    Inventors: Troy Liebl, David Best, Sean Kioski
  • Patent number: 11860380
    Abstract: An alignment tool including a first and a second positioning system configured for positioning and orientating a first lens and a second lens respectively, wherein a light beam is configured to be disposed through the first lens and the second lens to cast a light spot on the image plane, if the light spot does not stay stationary on the image plane when at least one of the first lens and the second lens is rotated about the central axis of the light beam, at least one of the first positioning system and the second positioning system is actuated to alter at least one of the position and orientation of at least one of the first lens and the second lens until the light spot becomes stationary on the image plane, indicating the first lens is coaxially disposed with the second lens.
    Type: Grant
    Filed: August 15, 2023
    Date of Patent: January 2, 2024
    Assignee: MLOptic Corp.
    Inventors: Wei Zhou, Yubo Guan, Jiang He
  • Patent number: 11860450
    Abstract: An optical imaging lens assembly includes seven lens elements which are, in order from an object side to an image side: a first lens element, a second lens element, a third lens element, a fourth lens element, a fifth lens element, a sixth lens element and a seventh lens element. The seventh lens element has an image-side surface being concave in a paraxial region thereof. At least one of an object-side surface and the image-side surface of the seventh lens element has at least one critical point in an off-axis region thereof. The object-side surface and the image-side surface of the seventh lens element are both aspheric.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: January 2, 2024
    Assignee: LARGAN PRECISION CO., LTD.
    Inventor: Wei-Yu Chen
  • Patent number: 11855111
    Abstract: A Mid-Wave Infrared (MWIR) objective lens having an F # of 2.64 and a 33.6° angular field of view. It is deployed, with a focal plane and scanning system, on an airborne platform for remote sensing applications. Focal length is 9 inches, and the image is formed on a focal plane constituting CCD or CMOS with micro lenses. The lens has, from object to image, three optical element groups with a cold shield/aperture stop. Group 1 has a positive optical power and three optical elements; Group 2 has a positive optical power and four optical elements; Group 3 has a positive optical power and three optical elements. The objective lens is made of two Germanium and Silicon. The lens is both apochromatic and orthoscopic, and corrected for monochromatic and chromatic aberrations over 3.3 to 5.1 micrometers.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: December 26, 2023
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Mark L. Oskotsky, Thomas Altamura, Daniel Engheben, Morgan Jolley, Christopher V. Lipari, Vincent Lipari, Jerry Ma, Michael J. Russo, Jr., Yueli Zhang
  • Patent number: 11846832
    Abstract: A presbyopia correcting system includes a test lens assembly, a controller and a dynamic lens assembly. The test lens assembly is disposed within or on an eye of a patient and includes measuring device, a transmitter and a first supporting member. The measuring device measures a pressure exerted by an ocular element of the eye and then transmits the data to the controller. A medical provider can then select an appropriate dynamic lens assembly to replace the test lens assembly. The dynamic lens assembly includes a presbyopia correcting optical element configured to change a focus with the pressure exerted by the ocular element of the eye. The dynamic lens assembly also has a second supporting member that is identical to the first supporting member. Replacing the test lens assembly with the dynamic lens assembly then corrects the presbyopia condition of or provide low vision magnification for the patient.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: December 19, 2023
    Inventor: Valdemar Portney
  • Patent number: 11846865
    Abstract: A metasurface may include a substrate layer and a two-dimensional array of metallic optical pillars arranged in parallel rows extending vertically relative to the substrate layer. Gaps between adjacent pillars form optical resonators and a tunable dielectric material is positioned in the optical resonators between the pillars. A reflective layer positioned between the substrate layer and the two-dimensional array of pillars may include a two-dimensional array of elongated rectangular reflector patches arranged in parallel rows with an electrical isolation gap between adjacent rows of reflector patches. The plurality of reflector patches may be arranged lengthwise within each row with an off-resonance gap between adjacent reflector patches. The reflector patches in adjacent rows may be offset with respect to one another, such that the off-resonance gaps between adjacent reflector patches in one row are not aligned with the off-resonance gaps between adjacent reflector patches in an adjacent row.
    Type: Grant
    Filed: August 31, 2023
    Date of Patent: December 19, 2023
    Assignee: Lumotive, Inc.
    Inventor: Gleb M. Akselrod
  • Patent number: 11841503
    Abstract: An optical system is disclosed. The optical system includes collimating optics, including a polarization beam splitter, which includes one or more polarizations selection reflection surfaces configured to split image light into (s)-polarized light and (p)-polarized light. The collimating optics further include a first mirror configured to receive and reflect (p)-polarized light emitted from the one or more polarization selective reflection surfaces, a second mirror configured to receive and reflect (s)-polarized light emitted from the one or more polarization selective reflection surface, and a corrector lens configured to receive (p)-polarized light reflected from the first mirror and receive (s)-polarized light reflected from the second mirror, wherein a light path of the (s)-polarized light and a light path of the (p)-polarized light are substantially equal, wherein the (p)-polarized light and the (s)-polarized light are configured to combine to form a user image.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: December 12, 2023
    Assignee: Rockwell Collins, Inc.
    Inventors: Eric P. Stratton, Christopher A. Keith
  • Patent number: 11841482
    Abstract: An imaging lens includes a first lens with a negative refractive power, a second lens with a positive refractive power, a third lens with a positive refractive power and a fourth lens with a refractive power arranged in order from a first side to a second side, and an aperture stop is disposed between the first lens and the third lens. The first lens, the second lens, the third lens and the fourth lens are made from glass, a total number of lenses with refractive powers in the imaging lens is less than 5, the second lens and the third lens are aspheric glass lenses, and a full field of view of the imaging lens is greater than 120 degrees.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: December 12, 2023
    Assignee: RAYS OPTICS INC.
    Inventors: Ching-Sheng Chang, Chia-Chen Kung, Chiu-Jung Lai, Kuo-Chuan Wang
  • Patent number: 11835794
    Abstract: An optical imaging system includes a first lens, a second lens, a third lens, a fourth lens, and a fifth lens, sequentially disposed from an object side, wherein the first to fifth lenses are spaced apart from each other by predetermined distances along an optical axis in a paraxial region, the first lens and the second lens each have a non-circular shape when viewed in an optical axis direction, and the optical imaging system satisfies 0.62398<ZS1/ZS2<1.36318, where ZS1 is a ratio of an area of an object-side surface of the first lens to a distance from the object-side surface of the first lens to an imaging plane of an image sensor, and ZS2 is a ratio of an area of an object-side surface of the second lens to a distance from the object-side surface of the second lens to the imaging plane of the image sensor.
    Type: Grant
    Filed: July 29, 2022
    Date of Patent: December 5, 2023
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dae Hyun Jeong, Ho Sik Yoo, Jong In Lee, Jong Ki Kim
  • Patent number: 11835693
    Abstract: An imaging optical system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with refractive power has an object-side surface being convex in a paraxial region and an image-side surface being concave in a paraxial region. The second lens element with positive refractive power has an image-side surface being convex in a paraxial region. The third lens element with negative refractive power has an image-side surface being concave in a paraxial region. The fourth lens element with positive refractive power has an image-side surface being convex in a paraxial region. The fifth lens element with negative refractive power has an image-side surface being concave in a paraxial region and having a convex shape in an off-axial region thereof.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: December 5, 2023
    Assignee: LARGAN PRECISION CO., LTD.
    Inventors: Dung-Yi Hsieh, Chun-Che Hsueh, Wei-Yu Chen
  • Patent number: 11835786
    Abstract: A multi-element imaging lens can be formed from five plastic elements, and an optional null-power or relatively low power sixth plastic element. The lens can use selected plastic materials to reduce a thermal focal shift. In the lens, negative refractive power elements can be formed from plastic materials having a relatively large negative refractive index variation with temperature, abbreviated as dn/dT, while positive refractive power elements can be formed from plastic materials having a relatively small negative dn/dT. Reducing the thermal focal shift, as disclosed, can eliminate the need for an auto-focusing device, such as a voice coil. Reducing the thermal focal shift, as disclosed, can also eliminate the need to use one or more glass elements to further reduce thermal focal shift, which can reduce cost for the lens.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: December 5, 2023
    Assignee: Snap Inc.
    Inventor: Robert Matthew Bates
  • Patent number: 11835728
    Abstract: An example eye-tracking optical assembly includes a light source for illuminating an eye, a first diffraction type polarizing beam splitter (DT-PBS), and a second DT-PBS, wherein the first DT-PBS is configured to direct, based on polarization, a first portion of light from the second DT-PBS towards an eye-tracking detector.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: December 5, 2023
    Assignee: Meta Platforms Technologies, LLC
    Inventors: Fenglin Peng, Ying Geng, Oleg Yaroshchuk
  • Patent number: 11828941
    Abstract: An optical device includes a stack that includes a first curved optical element stacked with a second curved optical element. The second curved optical element propagates light by total internal reflection. The stack also includes an incoupling diffractive grating that incouples the light into the second optical element and an outcoupling diffractive grating optically coupled to the incoupling diffractive grating through the second curved optical element. The outcoupling diffractive grating directs the light. The first curved optical element has a first refractive index, the second curved optical element has a second refractive index, and the first refractive index is different from the second refractive index by approximately 0.15 to 1.2.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 28, 2023
    Assignee: Corning Incorporated
    Inventors: Michael Lucien Genier, Mark Francis Krol, Michael John Moore, Horst Schreiber
  • Patent number: 11828929
    Abstract: Articles comprises iron oxide colloidal nanocrystals arranged within chains, wherein the chains of nanocrystals are embedded within a material used to form the article or a transfer medium used to transfer a color to the article are described. The material or transfer medium includes elastic properties that allow the nanocrystals to display a temporary color determined by the strength of an external force applied to the article, and the material or transfer medium includes memory properties that cause the displayed temporary color to dissipate when the external force is removed, wherein the dissipation of the displayed temporary color is sufficiently slow as to be visually observable by an average observer's unaided eye.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 28, 2023
    Assignee: adidas AG
    Inventor: Michel Reginald Pierre Joseph Lussier
  • Patent number: 11828909
    Abstract: An imaging lens which uses a larger number of constituent lenses for higher performance and features compactness and a wide field of view. The imaging lens is composed of seven lenses to form an image of an object on a solid-state image sensor. The constituent lenses are arranged in the following order from an object side to an image side: a first lens with positive refractive power; a second lens with positive or negative refractive power; a third lens with negative refractive power; a fourth lens with positive or negative refractive power as a double-sided aspheric lens; a meniscus fifth lens having a convex surface on the image side; a sixth lens with positive or negative refractive power as a double-sided aspheric lens; and a seventh lens with negative refractive power, in which an air gap is provided between lenses.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: November 28, 2023
    Assignee: TOKYO VISIONARY OPTICS CO., LTD.
    Inventor: Masaya Hashimoto
  • Patent number: 11828923
    Abstract: An imaging lens consists of, in order from the object side, a first lens group, a stop, a positive second lens group, and a third lens group. During focusing, at least the second lens group moves and the third lens group does not move. The second lens group includes at least two negative lenses. The third lens group consists of one negative lens and one positive lens.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: November 28, 2023
    Assignee: FUJIFILM Corporation
    Inventors: Masato Kondo, Tetsuya Ori, Michio Cho
  • Patent number: 11828921
    Abstract: A lens module includes lenses sequentially arranged from an object side toward an image plane sensor and having respective refractive powers. A second lens of the lenses has a convex object-side surface and a convex image-side surface. A first lens and a third lens of the lenses are symmetrical to each other in relation to the second lens.
    Type: Grant
    Filed: March 13, 2023
    Date of Patent: November 28, 2023
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Kyu Min Chae
  • Patent number: 11822061
    Abstract: A digital camera comprising a digital image sensor and at least one corrective lens element configured to reduce a blurring of an image in a horizontal or vertical dimension on the digital image sensor. Preferably the digital image sensor is a large digital imager such as a Digital 65 imager.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: November 21, 2023
    Assignee: Panavision International, L.P.
    Inventors: Daniel Keith Sasaki, David William Macintosh, Haluki Sadahiro