Patents Examined by Julian Anthony
  • Patent number: 9484568
    Abstract: The present invention provides a method of manufacturing and an apparatus for manufacturing a layered structure comprising a solid electrolyte layer, a positive electrode active material layer, and a negative electrode active material layer, which together constitute an all-solid-state battery.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 1, 2016
    Assignee: SINTOKOGIO, LTD.
    Inventors: Masahiko Nagasaka, Shogo Nakajima, Takayuki Nozawa, Osamu Sugino, Ikuto Mishima
  • Patent number: 9484569
    Abstract: Embodiments described herein generally relate to semi-solid suspensions, and more particularly to systems and methods for preparing semi-solid suspensions for use as electrodes in electrochemical devices such as, for example batteries. In some embodiments, a method for preparing a semi-solid electrode includes combining a quantity of an active material with a quantity of an electrolyte to form an intermediate material. The intermediate material is then combined with a conductive additive to form an electrode material. The electrode material is mixed to form a suspension having a mixing index of at least about 0.80 and is then formed into a semi-solid electrode.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 1, 2016
    Assignee: 24M Technologies, Inc.
    Inventors: Tristan Doherty, Pimpa Limthongkul, Asli Butros, Mihai Duduta, James C. Cross, III
  • Patent number: 9478822
    Abstract: An electrochemical cell stack system may include a plurality of cell stacks fluidly connected by a plurality of first conduits to form a loop of cell stacks. At least one first valve may be located on each first conduit and may be capable of a closed configuration and an open configuration. Each of the cell stacks may have an input end for receiving a first fluid and an output end for discharging a second fluid. The system may deliver the first fluid from the fluid source to the input end of a first cell stack of the plurality of cell stacks via a first input line of a plurality of input lines and may receive the second fluid from the output end of a second cell stack of the plurality of cell stacks via a first output line of a plurality of output lines.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: October 25, 2016
    Assignee: Nuvera Fuel Cells, LLC
    Inventor: Scott Blanchet
  • Patent number: 9470428
    Abstract: A power generation system of the present invention comprises: a power generation unit (1); a casing (2) that accommodates the power generation unit (1); a ventilator (3) that ventilates the interior of the casing (2); a first gas flow passage (5), arranged inside the casing (2), for a flow therethrough of gas which flows as the ventilator (3) operates; and a second gas flow passage (6), arranged inside the casing (2), for a flow therethrough of combustion exhaust gas from the power generation unit (1), wherein within the casing (2), the second gas flow passage (6) merges into the first gas flow passage (5).
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: October 18, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Akinori Yukimasa, Shigeki Yasuda, Junji Morita, Atsutaka Inoue, Hiroshi Tatsui
  • Patent number: 9461349
    Abstract: A metal-nitric oxide electrochemical cell which is fed a gas comprising nitric oxide (NO) and at least one gas selected from the group consisting of a nitrogen oxide of formula NxOy, oxygen, water vapor, a gaseous hydrocarbon, carbon monoxide and carbon dioxide is provided. Also provided is a rechargeable battery containing the metal-nitrogen oxides electrochemical cell. A vehicle system wherein exhaust gas from a combustion engine serves as a feed of active cathode material to a metal-nitrogen oxides battery is additionally provided.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: October 4, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Fuminori Mizuno, Paul T. Fanson, Charles A. Roberts
  • Patent number: 9455479
    Abstract: A rechargeable battery includes an electrode assembly including a first electrode and a second electrode, a case configured to store the electrode assembly, a cap plate attached to the case, a terminal electrically connected to the first electrode and protruding out of the cap plate, a current collecting member connecting the first electrode with the terminal, the current collecting member including a fuse portion, a lower insulating member between the cap plate and the current collecting member, and a barrier between the lower insulating member and the fuse portion.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: September 27, 2016
    Assignee: SAMSUNG SDI CO., LTD.
    Inventor: Min-Hyung Guen
  • Patent number: 9455438
    Abstract: Disclosed are a method for preparing an electrode mix comprising (i) adding an electrode active material, a conductive material and a binder to a solvent, (ii) further adding a surfactant to the mixture of step (i), and (iii) mixing the resulting mixture of step (ii) and an electrode mix for secondary batteries prepared by the method.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: September 27, 2016
    Assignee: LG CHEM, LTD.
    Inventors: SooHyun Lim, Jihyun Kim, Tae Jin Park
  • Patent number: 9450268
    Abstract: A production apparatus is equipped with a supply unit which has a cassette member 50 for bearing a predetermined number of positive electrode plates or negative electrode plates, and which batchwise supplies a plurality of positive electrode plates 5 or negative electrode plates 6 placed on the cassette member 50 to respective electrode plate conveying trays 19 of an electrode plate conveying member 20.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: September 20, 2016
    Assignees: ELIIY POWER CO., LTD., NAGANO AUTOMATION CO., LTD.
    Inventors: Hiroshi Sato, Seiji Yamaura
  • Patent number: 9450272
    Abstract: New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.
    Type: Grant
    Filed: April 14, 2013
    Date of Patent: September 20, 2016
    Assignee: Seeo, Inc.
    Inventors: Jonathan Pistorino, Hany Basam Eitouni
  • Patent number: 9437893
    Abstract: An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: September 6, 2016
    Assignee: The Trustees of the Stevens Institute of Technology
    Inventors: Ayokunle Omosebi, Ronald Besser
  • Patent number: 9425440
    Abstract: Disclosed herein are a battery cell including an electrode assembly configured to have a structure including cathodes, anodes, and separators respectively disposed between the cathodes and the anodes, the electrode assembly being provided with a through hole in a direction in which the electrodes are stacked, and a battery case provided at each side thereof with an opening communicating with the through hole and a battery pack including the same.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: August 23, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Sungjin Kwon, Soonho Ahn, Ki Woong Kim, Pillgyu Jang, Young Hun Kim, Sunghan Yoon
  • Patent number: 9415674
    Abstract: An energy storage system comprising at least one energy storage module adapted to supply electrical energy to a hybrid vehicle. The energy storage module comprises a primary enclosure, at least one battery array located within the primary enclosure, and an energy storage controller module located within the primary. The energy storage controller module is further connected to a hybrid control module of the hybrid vehicle by a low voltage connecter. A high voltage junction box is attached to a first end of the primary enclosure and having a plurality of high voltage connection terminals. At least one of the high voltage connection terminals is configured to receive a high voltage conductor connected between the energy storage module and an inverter of the hybrid vehicle. When multiple energy storage modules are used in conjunction, one module functions as a master module and one module functions as a slave module.
    Type: Grant
    Filed: June 6, 2013
    Date of Patent: August 16, 2016
    Assignee: Allison Transmission, Inc.
    Inventors: Daniel J. Youngs, Kurt Biehl, Edward Bass, Eric D. Schneider, Felice E. Bailey, Steven T. Reyburn
  • Patent number: 9419266
    Abstract: This polyolefin resin porous film can be easily produced, and when used as a non-aqueous electrolyte cell separator, can suppress clogging and can evince a high cell output. The polyolefin resin porous film is a porous film having a polyolefin resin as the primary component and is characterized by the average flow diameter pressure (PAP) being 1500-2500 kPa, the bubble point pressure (PBP) being 300-1500 kPa, and the ratio (Pa/PAP) of the air permeability (Pa) and the bubble point pressure (PBP) being no greater than 0.35 sec/(100 ml·kPa).
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: August 16, 2016
    Assignee: Mitsubishi Plastics, Inc.
    Inventors: Toru Terakawa, Takeyoshi Yamada, Yasushi Usami
  • Patent number: 9401501
    Abstract: Electrochemical cells and methods of making electrochemical cells are described herein. In some embodiments, an apparatus includes a multi-layer sheet for encasing an electrode material for an electrochemical cell. The multi-layer sheet including an outer layer, an intermediate layer that includes a conductive substrate, and an inner layer disposed on a portion of the conductive substrate. The intermediate layer is disposed between the outer layer and the inner layer. The inner layer defines an opening through which a conductive region of the intermediate layer is exposed such that the electrode material can be electrically connected to the conductive region. Thus, the intermediate layer can serve as a current collector for the electrochemical cell.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: July 26, 2016
    Assignee: 24M Technologies, Inc.
    Inventors: Ricardo Bazzarella, Alexander H. Slocum, Tristan Doherty, James C. Cross, III
  • Patent number: 9390866
    Abstract: It is an object of the present invention to provide a current collector including an aluminum porous body suitable for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor electrode, and an electrode using the current collector. In the three-dimensional network aluminum porous body for a current collector of the present invention, when a sheet-shaped three-dimensional aluminum porous body is divided in the width direction into a central region and two end regions with the central region situated therebetween, the weight per unit area of aluminum in the aluminum porous body at the two end regions is larger than the weight per unit area of aluminum in the aluminum porous body at the central region.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: July 12, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Patent number: 9379367
    Abstract: Disclosed herein is a battery pack including two or more battery modules connected to each other, external input and output terminals being formed at one side of each of the battery modules, each of the battery modules including a plurality of unit cells electrically connected to each other while being stacked, wherein the two or more battery modules are connected in series or in parallel to each other via a connection member such that one of the battery modules is connected to an adjacent one of the battery modules, and the connection member is configured to have a structure in which different kinds of metals having different melting points are coupled to each other.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: June 28, 2016
    Assignee: LG CHEM, LTD.
    Inventors: BumHyun Lee, Jin-Kyu Shin
  • Patent number: 9368835
    Abstract: Disclosed are an electrolyte for a secondary battery, and a secondary battery including the same, the electrolyte including an electrolyte salt; an electrolyte solvent; and a compound generating heat through oxidation at voltages higher than drive voltage of a cathode, wherein the compound can decompose or evaporate electrolyte components by oxidation heat, thereby causing gas generation. Also, the compound is included in an internal pressure increase accelerant for a battery. Upon overcharge, since a compound subjected to oxidation at voltages higher than normal drive voltage of a cathode generates heat, electrolyte components can be decomposed or evaporated, thereby generating gas by the oxidation heat. Accordingly, it is possible to operate a safety means of a battery, without using an internal pressure increasing material directly generating gas through oxidation at overcharge voltage as the electrolyte additive, and thus to improve the overcharge safety of a secondary battery.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: June 14, 2016
    Assignee: LG Chem, Ltd.
    Inventors: Miyoung Son, Jeong-Ju Cho, Hochun Lee, Joomi Jeon, Sunghoon Yu
  • Patent number: 9368816
    Abstract: A fuel cell system including a fuel cell stack having a plurality of fuel cells, each of the fuel cells including an electrolyte membrane disposed between an anode and a cathode, an anode supply manifold in fluid communication with the anodes of the fuel cells, the anode supply manifold providing fluid communication between a source of hydrogen and the anodes, an anode exhaust manifold in fluid communication with the anodes of the fuel cells, and a fan in fluid communication with the anodes of the fuel cells, wherein the fan controls a flow of fluid through the anodes of the fuel cells after the fuel cell system is shutdown.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: June 14, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Thomas A. Greszler, Gary M. Robb, John P. Salvador, Balasubramanian Lakshmanan, Hubert Gasteiger
  • Patent number: 9368847
    Abstract: A metal-NxOy electrochemical cell is provided. The cell contains a partition which inhibits diffusion of NxOy+ active species from the cathode compartment to the anode compartment. Also provided is a rechargeable battery containing the metal-NxOy electrochemical cell. A vehicle system wherein NxOy from a combustion engine exhaust is fed to a metal-NxOy battery is additionally provided.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: June 14, 2016
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Fuminori Mizuno, Paul T. Fanson, Charles A. Roberts
  • Patent number: 9356316
    Abstract: The present invention relates to vacuum-deposited solid state electrolyte layers with high ionic conductivity in electrochemical devices, and methods and tools for fabricating said electrolyte layers. An electrochemical device may comprise solid state electrolytes with incorporated thin layers and/or particles of transition metal oxides, silicon, silicon oxide, or other suitable materials that will induce an increase in ionic conductivity of the electrolyte stack (for example, materials with which lithium is able to intercalate), or mixtures thereof. An improvement in ionic conductivity of the solid state electrolyte is expected which is proportional to the number of incorporated layers or a function of the distribution uniformity and density of the particles within the electrolyte. Embodiments of the present invention are applicable to solid state electrolytes in a broad range of electrochemical devices including thin film batteries, electrochromic devices and ultracapacitors.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: May 31, 2016
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Chong Jiang, Byung-Sung Leo Kwak