Patents Examined by Justin Bova
  • Patent number: 8282903
    Abstract: A processes for the regeneration of a silver nitrate and nitric acid based electrolyte as used in certain silver refining processes is based on the hydrolytic removal of undesired metal-based compounds such as water insoluble hydrolysable base metal cations and water insoluble hydrolysable base metal nitrates from which the soluble silver nitrate and nitric acid based electrolyte may be separated. Water is added slowly to a dewatered electrolyte melt held at a predetermined, elevated, temperature while allowing nitric acid thereby formed to evolve and be separated from the melt while the water insoluble base metal salts are formed. The melt is then diluted with water to dilute the silver nitrate contained therein and the insoluble base metal salts are separated from the mixture by filtration.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: October 9, 2012
    Assignee: Royal Canadian Mint
    Inventors: Bryn Harris, Carl White, Vicken Aprahamian
  • Patent number: 8257679
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Patent number: 8252266
    Abstract: The invention provides methods and compositions for improving the production of alumina. The invention involves adding a product containing one or more polysaccharides to liquor within the fluid circuit of the production process, where one of the polysaccharides is scieroglucan. The use of scleroglucan can impart a number of advantages including at least some of: greater flocculation effectiveness, increasing the maximum effective dosage, faster settling rate. The production process can be a Bayer process.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: August 28, 2012
    Assignee: Nalco Company
    Inventors: Ryan Chester, John D. Kildea, Jing Wang, Heinrich E Bode, Xiaojin Harry Li
  • Patent number: 8236266
    Abstract: A method for improving yield of an upgraded metallurgical-grade (UMG) silicon purification process is disclosed. In the UMG silicon (UMGSi) purification process, in a reaction chamber, purification is performed on a silicon melt therein by one, all or a plurality of the following techniques in the same apparatus at the same time, including: a crucible ratio approach, the addition of water-soluble substances, the control of power, the control of vacuum pressure, the upward venting of exhaust, isolation by high-pressure gas jet, and carbon removal by sandblasting, thereby reducing oxygen, carbon and other impurities in the silicon melt, meeting a high-purity silicon standard of solar cells, increasing yield while maintaining low cost, and avoiding EMF reduction over time. An exhaust venting device for purification processes is also disclosed, which allows exhaust to be vented from the top of the reactor chamber, thereby avoiding backflow of exhaust into the silicon melt and erosion of the reactor.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: August 7, 2012
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Patent number: 8236277
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a carboxylate anion comprising from one to four alkyleneoxy moieties, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) at least one carboxylic acid comprising from one to four alkyleneoxy moieties, at least one salt of the carboxylic acid and a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 7, 2012
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Patent number: 8236265
    Abstract: The present invention provides a method for forming high quality silicon material, e.g., polysilicon. The method includes transferring a raw silicon material in a crucible having an interior region. The crucible is made of a quartz or other suitable material, which is capable of withstanding a temperature of at least 1400 Degrees Celsius. The method includes subjecting the raw silicon material in the crucible to thermal energy to cause the raw silicon material to be melted into a liquid state to form a melted material at a temperature of less than about 1400 Degrees Celsius. Preferably, the melted material has an exposed region bounded by the interior region of the crucible.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 7, 2012
    Inventors: Masahiro Hoshino, Cheng C. Kao
  • Patent number: 8226920
    Abstract: The invention concern an apparatus and a method for manufacturing polycrystalline silicon having a reduced amount of boron compounds. The invention feeds Ar gas in a trichlorosilane line, which connects a trichlorosilane (TCS) tank and a series of distillation units. The distillation units have a pressure transducer and a pressure independent control valve (PIC-V) positioned on a vent gas line for discharging vent gas from the distillation units. Ar gas is fed to the TCS line with higher pressure than the pressure set for opening the PIC-V. The TCS is distilled by the distillation units with continuously discharging vent gas from the distillation units.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: July 24, 2012
    Assignees: Mitsubishi Polycrystalline Silicon America Corporation (MIPSA), Mitsubishi Materials Corporation
    Inventors: Takeshi Kamei, Mamoru Nakano
  • Patent number: 8206671
    Abstract: The present invention provides a porous composite oxide comprising an aggregate of secondary particles in the form of aggregates of primary particles of a composite oxide containing two or more types of metal elements, and having mesopores having a pore diameter of 2-100 nm between the secondary particles; wherein, the percentage of the mesopores between the secondary particles having a diameter of 10 nm or more is 10% or more of the total mesopore volume after firing for 5 hours at 600° C. in an oxygen atmosphere.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Kohei Yoshida, Akio Koyama
  • Patent number: 8178743
    Abstract: A method for remediating hazardous materials susceptible to nucleophillic attack is disclosed wherein sodium hydroxide is applied to a treatment zone in situ for raising the pH of the treatment zone to at least about 12.5 so that alkaline hydrolysis effectively breaks down the hazardous substance by replacing a leaving group with a nucleophile. The method is well suited for in situ use in the vadose zone to treat contaminated soil and groundwater.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: May 15, 2012
    Assignee: Tetra Tech, Inc.
    Inventors: Ronald Britto, Madhukant Patel, Mikael L. Spangberg, Richard W. Arnseth, Franklin R. Bogle
  • Patent number: 8173099
    Abstract: An aggregate material includes an aluminous material and a toughening agent in contact with the aluminous material. The aluminous material has a primary aspect ratio of at least about 1.5 and a particle size between about 30 nm and about 1000 nm.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: May 8, 2012
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventor: Doruk O. Yener
  • Patent number: 8163262
    Abstract: Presented is a method for Batch or continuous production of nitrogen trifluoride (NF3) using direct fluorination of organic solution of trimethylsilylamines at low temperatures. Fluorine gas reacts with a solution of tris(trimethylsilyl)amine or bis(trimethylsilyl)amine in a suitable reactor to produce NF3 in a continuous flow process. The crude product can be purified by a channeling the crude process flow through a scrubber to remove reactive byproducts and by cryogenic trapping of other non reactive byproducts in the process flow. Temperatures in the reaction and storage vessels are maintained to control the reaction products based on thermodynamics of the process and products. NF3 is liquefiable at ?126 degree Centigrade, and may be collected and used in other processes. The method also produce NF3 as a continuous gas flow process where fluorine is channeled to contact micro droplet suspensions of bis(trimethylsilyl)amines in sulfur hexafluoride.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: April 24, 2012
    Inventor: Bamidele A. Omotowa
  • Patent number: 8157931
    Abstract: An advanced secondary hardening carburized Ni—Co steel achieves an improved case hardness of about 68-69 Rc together with nominal core hardness of about 50 Rc.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: April 17, 2012
    Assignee: Northwestern University
    Inventors: Yana Qian, Gregory B. Olson
  • Patent number: 8158093
    Abstract: Methods and apparatus for the production of high purity silicon including a fluidized bed reactor with one or more protective layers deposited on an inside surface of the fluidized bed reactor. The protective layer may be resistant to corrosion by fluidizing gases and silicon-bearing gases.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: April 17, 2012
    Assignee: Siliken Chemicals, S.L.
    Inventors: Javier San Segundo Sanchez, Jose Luis Montesinos Barona, Evaristo Ayuso Conejero, Manuel Vicente Vales Canle, Xavier Benavides Rel, Pedro-Tomas Lujan Garcia, Maria Tomas Martinez
  • Patent number: 8137651
    Abstract: A method for preparing a silica aerogel in the form of permanently hydrophobic powder in a short time, wherein the silica aerogel has a high specific surface area and high functionality, and is prepared by subjecting a wet gel to a solvent exchange process and a silylizing process in a mixture solvent including a silylizing agent at the same time, the wet gel being prepared using a water glass as a raw material and adding a surfactant at a room temperature.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: March 20, 2012
    Inventor: Dong Jin Yeo
  • Patent number: 8119090
    Abstract: Disclosed is a method for preparation of a nickel-carbonitride sphere, which includes preparing a melamine-formaldehyde resin, adding a nickel salt and a surfactant to the melamine-formaldehyde resin to prepare a nickel-melamine resin mixture, and conducting spray pyrolysis for the mixture to produce nickel-containing powder including nickel-carbonitride spheres. In addition, this method may further include thermal treatment of the nickel-containing powder.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: February 21, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Se-Yun Kim, Jun-Ho Kwon, Seung-Jun Heo
  • Patent number: 8088351
    Abstract: The invention relates to a process for the preparation of ethanedinitrile, by reading hydrocyanic acid in the liquid phase with nitric acid in the presence of a cupric ion catalyst.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: January 3, 2012
    Assignee: Lonza Ltd.
    Inventors: Ellen Klegraf, Thomas Grützner, Jan Keller
  • Patent number: 8088528
    Abstract: A method to condense and recover carbon dioxide. A first step involve providing at more than one heat exchanger, with each heat exchanger having a first flow path for passage of a first fluid and a second flow path for passage of a second fluid. A second step involves passing a stream of very cold natural gas sequentially along the first flow path of each heat exchanger until it is heated for distribution and concurrently passing a gaseous stream rich in carbon dioxide sequentially along the second flow path of each heat exchanger, allowing a gaseous portion of the gaseous stream rich in carbon dioxide to pass to a next sequential heat exchanger and capturing in a collection vessel the condensed carbon dioxide.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: January 3, 2012
    Inventors: Jose Lourenco, MacKenzie Millar
  • Patent number: 8088710
    Abstract: The present invention is directed to a method of preparing compositions enriched in compounds containing carbon chains of varying degrees of unsaturation using argentation chromatography. The present method utilizes an argentized cationic resin or a conditioned argentized alumina to separate compounds containing saturated or mono-unsaturated carbon chains from compounds having polyunsaturated carbon chains present in a starting composition. The invention is particularly useful for preparing a composition enriched in polyunsaturated fatty acid alkyl esters from mixtures of fatty acid esters in a starting composition derived from vegetable oils. The present invention is also directed to a method of preparing a conditioned argentized alumina adsorbent having increased selectivity for compounds containing one or more polyunsaturated carbon chains.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 3, 2012
    Assignee: Archer Daniels Midland Company
    Inventors: Thomas P. Binder, Doug Geier, Ahmad K. Hilaly, Robert D. Sandage, John G. Soper
  • Patent number: 8043599
    Abstract: A method for fabricating a high specific surface area mesoporous alumina is disclosed, which includes the following steps: (a) providing a water solution containing an aluminum salt and a fluoro-surfactant; (b) adding concentrated hydrochloric acid to adjust the PH value of the solution to about 6.0 to 8.0; (c) aging the solution at 70° C. to 110° C. for 12 to 20 hours; (d) washing the precipitate with water; (e) washing the precipitate with an organic solvent; (f) drying the precipitate; and (g) sintering the precipitate in a furnace of 500° C. to 1000° C.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: October 25, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Tz-Bang Du, Yung-Chan Lin, Bor-Wen Chen, SHyue-Ming Jang
  • Patent number: 7993618
    Abstract: A method for making the metal oxide includes the following steps: mixing a metal nitrate with a solvent of octadecyl amine, and achieving a mixture; agitating and reacting the mixture at a reaction temperature for a reaction period; cooling the mixture to a cooling temperature, and achieving a deposit; and washing the deposit with an organic solvent, drying the deposit at a drying temperature and achieving a metal oxide nanocrystal. The present method for making a metal oxide nanocrystal is economical and timesaving, and has a low toxicity associated therewith. Thus, the method is suitable for industrial mass production. The metal oxide nanocrystal material made by the present method has a readily controllable size, a narrow size distribution, and good crystallinity.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 9, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Ding-Sheng Wang