Abstract: A battery charging system in which current is averaged over a long time period (seconds) to determine the maximum average charging rate. When the integral of charging current over this long period reaches the programmed maximum charge value for one period, current is simply cut off for the remainder of the fixed long period.
Abstract: Battery backed-up power units, and battery disconnect modules and methods of manufacturing the same. One of the battery disconnect modules includes: (1) a contactor having a body, a control input and rigid conductors extending from the body and (2) a control circuit mount, connected to and supported by the rigid conductors, that contains control circuitry that controls the contactor by the control input, the rigid conductors connected to busbars within the battery backed-up power unit to provide a mount for the battery disconnect module and allow said control circuit to monitor a characteristic of a battery within the battery backed-up power unit and control the contactor in response thereto.
Abstract: An apparatus and method for charging a battery are described in a technique wherein charge pulses are followed by discharge pulses and then first rest periods and other discharge pulses followed by second rest periods. Selected ones of the second rest periods are extended in time to enable a battery equilibrium to be established and the open circuit voltage of the battery to settle down and reflect an overcharging condition of the battery. By comparing the open circuit voltages measured during different extended second rest periods small voltage decreases can be reliably detected and used to determine an overcharging condition such as when gases are generated and affect the open circuit voltage. Once overcharging is detected the battery charging is stopped.
Abstract: A process for charging one or more lithium containing electrochemical cells which exhibit a plurality of characteristics with respect to time while either being charged with or while discharging energy, wherein the charging process includes an unpetrify phase, a fast phase, a top up phase, a done phase, a good phase, and a low phase.
Abstract: The circuit rapidly connects and disconnects solar cells to a battery to be charged. As a result of this operation, a "force charge" is applied to the battery even when low radiation is incident on the solar cells, resulting in increased efficiency of a solar power generation system including the solar cells. For example, using the circuit according to the present invention, solar cells only have to provide one and a half times the power of the battery instead of three times the power, as with conventional solar power generation systems.