Patents Examined by Kaijiang Zhang
  • Patent number: 11123735
    Abstract: Provided are methods and systems useful for screening large libraries of effector molecules. Such methods and systems are particularly useful in microfluidic systems and devices. The methods and systems provided herein utilize encoded effectors to screen large libraries of effectors.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: September 21, 2021
    Assignee: 1859, Inc.
    Inventors: Devon Cayer, Andrew MacConnell, Pavel Chubukov, Ramesh Ramji, Sean Stromberg
  • Patent number: 11125752
    Abstract: The present disclosure provides methods, device, assemblies, and systems for dispensing and visualizing single cells. For example, provided herein are systems and methods for dispensing a dispense volume into a plurality of wells of a multi-well device, where, on average, a pre-determined number of cells (e.g., 1-20) are present in the dispense volume, and determining, via a cellular label, the number of cells present in each of the plurality of wells. Such dispensing and cell detection may be repeated a number of times with respect to wells identified as having less than the pre-determined number of cells in order increase the number wells in the multi-well device containing the desired number (e.g., a single cell).
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: September 21, 2021
    Assignee: Takara Bio USA, Inc.
    Inventors: Alain-Albert Mir, Thomas D. Schaal, Chun-Wah Lin, Shanavaz Loharasp D. Nasarabadi, Jude Dunne, Maithreyan Srinivasan, Patricio A. Espinoza-Vallejos
  • Patent number: 11118222
    Abstract: Aspects of the invention include methods for preparing an enriched sequencing library. In some embodiments, the methods involve preparing a sequencing library that is enriched for AT-rich sequences. In certain embodiments, the methods involve determining a presence or an absence of cancer, determining a cancer stage, monitoring cancer progression, and/or determining a cancer classification in a subject by analyzing an enriched sequencing library.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 14, 2021
    Assignee: GRAIL, Inc.
    Inventors: Nicholas Eattock, Byoungsok Jung, Justice Williams
  • Patent number: 11111489
    Abstract: Described herein is a method for determining a lymphocyte cell receptor chain sequence specific to a unique antigen, comprising: sorting a plurality of antigens into a plurality of reaction mixtures, wherein the sorting comprises adding a unique antigen of the plurality of antigens to a unique subset of the plurality of reaction mixtures such that two different unique antigens are not added to the unique subset; contacting each reaction with a biological sample comprising a plurality of lymphocytes; separating a target lymphocyte from a subset of the plurality of lymphocytes, wherein the target lymphocyte recognizes the unique antigen; after separating the target lymphocyte, sequencing nucleic acids of the target lymphocyte to obtain the lymphocyte receptor chain sequence, wherein the sequencing is performed by single-cell sequencing; and detecting the unique antigen, wherein the detecting comprises: computing a frequency of lymphocyte cells that express the lymphocyte receptor chain sequence.
    Type: Grant
    Filed: January 6, 2021
    Date of Patent: September 7, 2021
    Assignee: Think Therapeutics, Inc.
    Inventors: David Gifford, Brandon Carter
  • Patent number: 11098355
    Abstract: The invention relates to a new method of characterising two or more target polynucleotides using a pore. The method involves sequentially attaching to a first polynucleotide one or more subsequent polynucleotides to form a concatenated polynucleotide.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: August 24, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Andrew John Heron, Daniel Ryan Garalde, James White
  • Patent number: 11098358
    Abstract: Disclosed herein are methods for single-cell sequencing. In some examples, the methods include enriching a sample comprising a plurality of cells for cells of interest to produce an enriched cell sample; isolating one or more cells of interest in the enriched cell sample; and obtaining sequence information of one or more polynucleotides from each of the one or more isolated cells. Obtaining sequence information may include generating a molecularly indexed polynucleotide library from the one or more isolated cells. Enriching the sample may include focusing cells of interest in the sample using acoustic focusing.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: August 24, 2021
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Clark Mason, Liping Yu
  • Patent number: 11091803
    Abstract: A method of determining absolute quantity of a sample template is provided, comprising: i) providing a series of control templates, each having a different and known copy number; ii) amplifying each control template and the sample template by PCR and detecting a signal correlating to an amount of PCR product in each PCR cycle during an exponential phase to thereby obtain a series of control signals and a sample signal; iii) making a standard curve relating a known copy number of each control template with an intensity of each corresponding control signal for the each PCR cycle; and iv) determining a copy number of the sample template by using the standard curve to translate an intensity of the sample signal to the copy number of the sample template.
    Type: Grant
    Filed: December 16, 2018
    Date of Patent: August 17, 2021
    Assignee: W2 Biosolutions, LLC
    Inventor: Zheng Wang
  • Patent number: 11091800
    Abstract: A method of increasing detection of low-abundant fragments of cell-free DNA (ccfDNA) in a biological sample is disclosed and discussed. Such a method can include isolating an initial fraction of ccfDNA fragments from a biological sample, ligating a unique molecular identifier (UMI) to each of the ccfDNA fragments in the initial fraction, amplifying the plurality of ccfDNA fragments to generate a ccfDNA library, isolating a short fraction of ccfDNA fragments from the ccfDNA library, where the ccfDNA fragments in the short fraction are limited to a size of less than or equal to 160 base pairs (bp), amplifying the ccfDNA fragments in the short fraction, and sequencing the ccfDNA fragments in the short fraction to generate sequenced ccfDNA fragments.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: August 17, 2021
    Assignee: University of Utah Research Foundation
    Inventor: Hunter R. Underhill
  • Patent number: 11085068
    Abstract: The invention comprises circular single-stranded templates for nucleic acid sequencing, methods of making and using the same.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: August 10, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Janine Mok, Ulrich Schlecht
  • Patent number: 11079389
    Abstract: The present invention provides a method for identifying a synthetic classifier including contacting at least a first and second samples derived from different groups of a cohort with a first plurality of peptides. The first plurality of peptides includes a first subset of peptides defining at least one naturally occurring amino acid sequence, and a second subset of peptides defining a plurality of variants of the first subset of peptides. The plurality of variants includes, for each one of the first subset of peptides, a variant peptide having at least one of a substitution, a deletion, an insertion, an extension, and a modification. The method further includes selecting at least one of the plurality of variants from the second subset of peptides, and defining a synthetic classifier including the at least one of the plurality of variants that distinguishes between samples derived from the first and second cohorts.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: August 3, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Hanying Li, Ken Lo, Jigar Patel
  • Patent number: 11066701
    Abstract: A method for template-directed sequencing-by-synthesis of an array of target polynucleotide can include: (a) providing an array of target polynucleotides in a fluidic vessel; (b) contacting the array of polynucleotides with a solution comprising (i) polymerization complex and (ii) reversibly terminating and differently labeled A,C,G, and T/U nucleotides; (c) incorporating one of the differently labeled nucleotides, using the polymerization complex, into a chain complementary to at least one of the array of polynucleotides; (d) binding imaging tags to the differently labeled nucleotides of step (c); (e) imaging and storing the identity and position of the imaging tags of step (d); (f) reversing termination (b)-(e); (g) repeating steps (b)-(e) and assembling a sequence for each of the array of target polynucleotides from the stored identity and position of the imaging tags, optionally as a homogeneous or one pot reaction. Additional methods of sequencing target polynucleotides are described herein.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 20, 2021
    Inventor: Kalim U. Mir
  • Patent number: 11060135
    Abstract: A method includes forming a patterned substrate including a plurality of base pads, using a nano-imprint lithography process. A capture substance is attached to each of the plurality of base pads, optionally through a linker, the capture substance being adapted to promote capture of a target molecule.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: July 13, 2021
    Assignee: Illumina, Inc.
    Inventors: M. Shane Bowen, Kevin L. Gunderson, Shengrong Lin, Maria Candelaria Rogert Bacigalupo, Kandaswamy Vijayan, Yir-Shyuan Wu, Bala Murali Venkatesan, James Tsay, John M. Beierle, Lorenzo Berti, Sang Ryul Park
  • Patent number: 11053543
    Abstract: Methods and systems are provided for massively parallel genetic analysis of single cells in emulsion droplets or reaction containers. Genetic loci of interest are targeted in a single cell using a set of probes, and a fusion complex is formed by molecular linkage and amplification techniques. Methods are provided for high-throughput, massively parallel analysis of the fusion complex in a single cell in a population of at least 10,000 cells. Also provided are methods for tracing genetic information back to a cell using barcode sequences.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: July 6, 2021
    Assignee: GigaGen, Inc.
    Inventors: David Scott Johnson, Everett Hurteau Meyer
  • Patent number: 11053542
    Abstract: The present technology relates to methods for determining whether a patient having thyroid nodules with indeterminate cytology will benefit from diagnostic surgery, e.g., lobectomy. These methods are based on screening a patient's thyroid nodules and detecting alterations in target nucleic acid sequences corresponding to a specific set of thyroid cancer-related genes. Kits for use in practicing the methods are also provided.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: July 6, 2021
    Assignee: Quest Diagnostics Investments LLC
    Inventors: Shih-Min Cheng, Joseph J. Catanese, Andrew Grupe, Feras Hantash, Frederic M. Waldman, Kevin Qu
  • Patent number: 11053608
    Abstract: Field of application: This invention relates to the chemistry of nucleotides and allows to synthesize new combinatorial libraries of supramolecular oligonucleotides for use in medical fields, cosmetology and pharmaceutical industry. This invention also can be applied for the creation of means used in the body rejuvenation, treating human diseases such as cancer, trophic ulcers, creating new herbicides and pesticides.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: July 6, 2021
    Inventors: Boris Farber, Sof'ya Farber, Artur Viktorovich Martynov
  • Patent number: 11046953
    Abstract: The disclosure generally relates to compositions and methods for the production of nucleic acid molecules. In some aspects, the invention allows for the microscale generation of nucleic acid molecules, optionally followed by assembly of these nucleic acid molecules into larger molecules. In some aspects, the invention allows for efficient production of nucleic acid molecules (e.g., large nucleic acid molecules such as genomes).
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: June 29, 2021
    Assignees: Life Technologies Corporation, Thermo Fisher Scientific GENEART GmbH
    Inventors: Todd Peterson, Axel Trefzer, Thomas Poehmerer
  • Patent number: 11041200
    Abstract: Systems and methods are provided for determining an optimized probe set. The method proceeds by obtaining a set of probes, where each probe has a respective concentration. The set of probes is assayed against a sample library, and at least i) a respective recovery rate for each probe in the set of probes, and ii) a median recovery rate for the set of probes are obtained. Modify the respective concentration of each probe that does not satisfy predetermined recovery rate threshold. Reevaluate the set of probes against the sample library. Repeat the modifying and reevaluation until the respective updated recovery rate for each probe in the updated set of probes satisfies the predetermined recovery rate threshold, thereby providing the optimized set of probes for the sample library.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: June 22, 2021
    Assignee: Tempus Labs, Inc.
    Inventor: Richard Blidner
  • Patent number: 11028438
    Abstract: In one implementation, a method is described. The method includes determining an operational characteristic of sensors of a sensor array. The method further includes selecting a group of sensors in the array based on the operational characteristic of sensors in the group. The method further includes enabling readout of the sensors in the selected group. The method further includes receiving output signals from the enabled sensors.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: June 8, 2021
    Assignee: Life Technologies Corporation
    Inventors: Todd Rearick, Mark Milgrew, Jonathan Schultz, Chris Papalias, Kim Johnson
  • Patent number: 11028429
    Abstract: Sensitive, unbiased methods for genome-wide detection of potential off-target nuclease cleavage sites in DNA, e.g., in cell type-specific genomic DNA samples.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: June 8, 2021
    Assignee: The General Hospital Corporation
    Inventors: J. Keith Joung, Shengdar Tsai
  • Patent number: 11021742
    Abstract: The invention generally relates to sequencing library preparation methods. In certain embodiments, two or more template nucleic acids are joined together by a linking molecule, such as a PEG derivative. Identical copies of a nucleic acid fragment or both strands of a duplex fragment may be linked together. The linked nucleic acids are amplified, creating linked amplicons. Emulsion PCR with linked primers creates linked template nucleic acids for seeding sequencing clusters and errors can be readily identified by their presence on only one of the linked fragments.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: June 1, 2021
    Assignee: Boreal Genomics, Inc.
    Inventors: Andrea Marziali, Joel Pel