Patents Examined by Kallambella Vijayakumar
  • Patent number: 7393586
    Abstract: A highly oxidation-resistant copper powder for conductive paste, which is a copper powder containing not more than 5 wt % of Si, is characterized in that substantially all of the Si is adhered to the surfaces of the copper particles as SiO2-system gel coating film.
    Type: Grant
    Filed: April 22, 2002
    Date of Patent: July 1, 2008
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Yoshihiro Okada, Atsushi Ebara
  • Patent number: 7378376
    Abstract: The invention provides a superconductor comprising particles made of a superconductive material, and a conductive material. The conductive material is selected to be driven to a superconductive state when in proximity to the superconductive material, and preferably at least includes gallium. An unbroken length of the conductive material is located sufficiently close to a plurality of the particles to be driven to a superconductive state by the superconductive material.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: May 27, 2008
    Assignee: Nove' Technologies, Inc.
    Inventor: Matthew J. Holcomb
  • Patent number: 7368097
    Abstract: Process for preparing nanocrystalline lithium titanate spinels by reacting lithium hydroxide and a titanium alkoxide at elevated temperature in a reaction mixture which forms water of reaction.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: May 6, 2008
    Assignee: BASF Aktiengesellschaft
    Inventor: Hans-Josef Sterzel
  • Patent number: 7364793
    Abstract: The present invention provides a powdered lithium transition metal oxide useful as a major component for cathode active material of rechargeable lithium batteries, comprising a lithium transition metal oxide particle, a doped interface layer formed near the surface of the particle, and a thermodynamically and mechanically stable outer layer, and a method of preparing the same.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: April 29, 2008
    Assignee: LG Chem, Ltd.
    Inventors: Jens M. Paulsen, Munju Kim, Joon Sung Bae, Jaeup Jang, Hong-Kyu Park
  • Patent number: 7361291
    Abstract: Polymer compositions comprising a) a polymer substrate selected from the group consisting of the polyolefins, polyesters, polyamides and polylactic acids and b) a combination of i) at least one permanent antistatic additive selected from the group consisting of the polyetheresteramides and ii) at least one migratory antistatic additive selected from the group consisting of the alkylsulfonic acid salts, the alkyl diethanolamines and the alkyl diethanolamides, are effectively antistatic.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: April 22, 2008
    Assignee: Ciba Specialty Chemicals Corporation
    Inventors: Hui Chin, Christopher J. Fagouri
  • Patent number: 7354531
    Abstract: A composition for use as a polymer electrolyte, wherein said composition includes one or more polar materials and one or more polyesters of formula III, wherein each unit A may be identical or different and is of the structure IV, wherein each unit B may be identical or different and is of the structure V, wherein R and R1 are each, independently, hydrogen, optionally substituted hydrocarbyl or an inert functional group; a process for preparing said composition; the use of said composition as a polymer electrolyte in coulometers, displays, smart windows, cells or batteries; and a cell and/or battery having said composition.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: April 8, 2008
    Assignee: Shell Oil Company
    Inventors: Wynham Henry Boon, Thomas Clayton Forschner, David Eric Gwyn, James R. MacCallum, Christopher John Smith, Michael John Smith
  • Patent number: 7354533
    Abstract: A conductive thermosetting composition comprises a functionalized poly(arylene ether), an alkenyl aromatic monomer, an acryloyl monomer, and a conductive agent. After curing, the composition exhibits good stiffness, toughness, heat resistance, and conductivity, and it is useful in the fabrication of a variety of conductive components, including the bipolar plates of fuel cells.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: April 8, 2008
    Assignee: General Electric Company
    Inventors: Gary William Yeager, Manuel Cavazos, Hua Guo, Glen David Merfeld, John Rude, Erich Otto Teutsch, Kenneth Paul Zarnoch
  • Patent number: 7354648
    Abstract: A non-stick coating includes fluoropolymer and electrically conductive mica. The coating may be used on rollers in printing machines to help dissipate static electricity.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: April 8, 2008
    Assignee: Akzo Nobel Non-Stick Coatings
    Inventor: Thomas J. Bate
  • Patent number: 7348100
    Abstract: Methods for producing an electrode active material precursor, comprising: a) producing a mixture comprising particles of lithium hydrogen phosphate, having a first average particle size, and a metal hydroxide, having a second average particle size; and b) grinding said mixture in a jet mill for a period of time suitable to produce a generally homogeneous mixture of particles having a third average size smaller than said first average size. The precursor may be used as a starting material for making electrode active materials for use in a battery, comprising lithium, a transition metal, and phosphate or a similar anion.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: March 25, 2008
    Assignee: Valence Technology, Inc.
    Inventors: George Adamson, Jeremy Barker, Allan Dirilo, Titus Faulkner, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 7341775
    Abstract: Provided are a composition for forming film which can form a porous film excelling in dielectric constant, adhesiveness, uniformity of the film, mechanical strength and having low hygroscopicity; a porous film and a method for forming the film; and a high-performing and highly reliable semiconductor device comprising the porous film inside. More specifically, provided is a composition for forming porous film, comprising a surfactant and a solution comprising polymer obtainable by hydrolyzing and condensing, in the presence of the surfactant, one or more of alkoxysilane represented by Formula (1) and one or more of alkoxysilane represented by Formula (2): (R1)mSi(OR2)4-m??(1) R3Si(R4)n(OR5)3-n??(2) Also provided is a method for forming porous film comprising a step of applying said composition on a substrate to form film and a step of transforming the film into porous film.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 11, 2008
    Assignee: Matsushita Electric Industrial Co. Ltd.
    Inventors: Yoshitaka Hamada, Fujio Yagihashi, Hideo Nakagawa, Masaru Sasago
  • Patent number: 7338619
    Abstract: A fuel cap 10 maintains high sealing even when subjected to external force; is easy to operate; and requires minimal space for accommodation. The cap device comprises a casing body 20 for closing the filler opening FNb in a sealed condition, a cover 40, a handle 45, a clutch mechanism 60 and a torque transmission mechanism 80. By upraising the handle to the handling position and applying rotational torque, rotational torque is transmitted to the casing body 20 via the clutch mechanism 60 and the torque transmission mechanism 80, closing the filler opening FNb. The handle 45 lowers back to the retracted position when released, whereupon the clutch mechanism 60 assumes non-transmission mode wherein the cover 40 and the handle 45 rotate freely if subjected to external force such as in a collision.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: March 4, 2008
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hiroyuki Hagano, Masayuki Nakagawa
  • Patent number: 7338921
    Abstract: An electrode is steeped in a solution of Mg and B and a negative voltage is applied to the electrode so as to precipitate superconductive MgB2 on the electrode. Superconductive MgB2 is easily manufactured in various forms and at low costs without any special device.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: March 4, 2008
    Assignee: National Institute for Materials Science
    Inventors: Hideki Abe, Hideaki Kitazawa, Akiyuki Matsushita
  • Patent number: 7332221
    Abstract: A composite body produced by a reactive infiltration process that possesses high mechanical strength, high hardness and high stiffness has applications in such diverse industries as precision equipment and ballistic armor. Specifically, the composite material features a boron carbide filler or reinforcement phase, and a silicon component with a porous mass having a carbonaceous component. Potential deleterious reaction of the boron carbide with silicon during infiltration is suppressed by alloying or dissolving boron into the silicon prior to contact of the silicon infiltrant with the boron carbide. In a preferred embodiment of the invention related specifically to armor, good ballistic performance can be advanced by loading the porous mass or preform to be infiltrated to a high degree with one or more hard fillers such as boron carbide, and by limiting the size of the largest particles making up the mass.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: February 19, 2008
    Assignee: M Cubed Technologies, Inc.
    Inventors: Michael K. Aghajanian, Allyn L. McCormick, Bradley N. Morgan, Anthony F. Liszkiewicz, Jr.
  • Patent number: 7332108
    Abstract: There is disclosed a method for preparing a thin ceramic and/or metallic solid-state composition consisting of three phases: a material (A), a material (B) and pores. The concentration of each phase varies continuously from one face of the article to the other in a continuous and controlled gradient. The porous matrix of material (A) has a porosity gradient of 0% to about 80%, the pores being completely or partly filled with material (B). The concentration of material (B) in the article therefore varies from 80% to 0% of small thicknesses.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: February 19, 2008
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Thierry Chartier, François Guillotin
  • Patent number: 7320762
    Abstract: The polymer compound contains a polymer matrix and a filler embedded in the matrix. The filler comprises two filler components with nonlinear current-voltage characteristics deviating from one another. By selection of suitable amounts of these filler components, a polymer compound with a predetermined nonlinear current-voltage characteristic deviating from these two characteristics can be formed in this way.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: January 22, 2008
    Assignee: ABB Schweiz AG
    Inventors: Felix Greuter, Yvo Dirix, Petra Kluge-Weiss, Walter Schmidt, Reto Kessler
  • Patent number: 7307045
    Abstract: A signal switching device is disclosed that is capable of transmitting signals with less signal loss while securing a good isolation characteristic. The signal switching device includes a first section formed from a superconducting material connected to a first transmission path. The first section has a smaller cross section at the input end than at the output end or, the signal switching device may include a first section formed from a superconducting material connected to a first transmission path in series, and a second section formed from a superconducting material connected to a second transmission path in parallel. The cross section of the second section is smaller than that of the second transmission path. The length of the second transmission path is determined in such a way that an input impedance of the second transmission path is sufficiently large when the second section is in a superconducting state.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: December 11, 2007
    Assignee: NTT DoCoMo, Inc.
    Inventors: Kunihiro Kawai, Daisuke Koizumi, Kei Satoh, Shoichi Narahashi, Tetsuo Hirota
  • Patent number: 7288170
    Abstract: A process is intended to allow simple and particularly reliable electrolyte generation and conditioning from metal-containing used electrolytes and/or used process solutions and/or pulverulent metal wastes. For this purpose, waste products containing metal ions from metal surface treatment processes are to be treated by producing and/or using a metal ion mixed solution, replacing anions contained in the metal ion mixed solution with anions selected for an intended use selected and selectively removing metal ions which are categorized as unsuitable for the intended use selected from the metal ion mixed solution prepared in this way.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: October 30, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jens Birkner, Ursus Krüger, Daniel Körtvelyessy, Ralph Reiche, Jan Steinbach, Marc de Vogelaere
  • Patent number: 7288217
    Abstract: An electroconductive compound in a flake form, characterized in that it comprises a titanium oxide which has an average long diameter of 1 to 100 ?m and an average thickness of 0.01 to 1.5 ?m, and contains potassium in an amount of 0.3 to 5 wt % in terms of potassium oxide (K2O) and, formed on the surface thereof, a first electroconductive layer comprising a tin oxide containing antimony and, formed on the first electroconductive layer, a second electroconductive layer comprising a tin oxide.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: October 30, 2007
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Yukiya Hareyama, Hidetoshi Ogawa
  • Patent number: 7276185
    Abstract: A conductor composition being able to easily secure the conductivity at the same level as an Ag bulk at low temperature process, a mounting substrate utilizing the conductor composition and a mounting structure utilizing the conductor composition are provided. In a mounting structure, wherein one or more electrodes (11) of a mounting substrate (10) and one or more surface mounting components (20) are connected through a conductor composition (30), and one or more surface wirings (14) of the mounting substrate (10), one or more inner-layer wirings (13) and one or more via conductors (12) are formed with the conductor composition, the conductor composition contains conductive particles with electrical conductivity, and the conductive particles are composed of low crystallized Ag fillers with the crystal size of 10 nm or less.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: October 2, 2007
    Assignee: DENSO CORPORATION
    Inventors: Masashi Totokawa, Yuji Ootani, Hirokazu Imai, Akira Shintai
  • Patent number: 7270871
    Abstract: A dispersion, and a film and optoelectronic devices formed from the dispersion are provided. The dispersion comprising conducting polymer containing particles having a particle size of less than 450 nm, wherein the conducting polymer comprises substituted or unsubstituted, uncharged or charged polymerized units of thieno[3,4-b]thiophene, and wherein a film drop cast from the dispersion has a conductivity from 10?1 to 10?6 S/cm measured using the four point probe method.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: September 18, 2007
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xuezhong Jiang, Roy Daniel Bastian