Patents Examined by Karen A. Canella
  • Patent number: 11452759
    Abstract: The invention provides a method for treating cancer comprising the step of administering a therapeutically effective amount of KPC1, a peptide which is at least about 70% homologous to the KPC1 or an agent which up-regulates KPC1. In some embodiments, there is also provided a method for treating cancer comprising the step of administering a therapeutically effective amount of p50, a peptide which is at least about 70% homologous to the p50 or an agent which up-regulates p50.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: September 27, 2022
    Assignee: TECHNION RESEARCH & DEVELOPMENT FOUNDATION LIMITED
    Inventors: Aaron Ciechanover, Yelena Kravtsova, Inna Shomer, Victoria Cohen
  • Patent number: 11395836
    Abstract: The present invention relates to a pharmaceutical composition for preventing or treating cancer comprising cancer antigen-specific cytotoxic T cells; the pharmaceutical composition comprises about 7×106 cells/mL or more, and of the about 7×106 cells/mL, about 90% or more are CD8+ T cells.
    Type: Grant
    Filed: December 16, 2019
    Date of Patent: July 26, 2022
    Assignee: Eutilex Co., Ltd.
    Inventors: Byoung S. Kwon, Young Ho Kim, Mun Ki Kim, Kwang Hee Kim, You Hyun Kang
  • Patent number: 11371099
    Abstract: The present invention relates to methods of using HEATR1 expression levels for guiding chemotherapy treatment of pancreatic cancer. In particular, measuring lower HEATR1 expression in pancreatic cancer is associated with resistance to the use of certain chemotherapy treatments such that by changing the treatment a better prognosis may be obtained for the patient. Further, lower HEATR1 expression is related to a poorer long-term prognosis of pancreatic cancer patients thus measuring an increase or maintenance/decrease during treatment may be useful for predicting treatment response.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: June 28, 2022
    Assignee: Mayo Foundation for Medical Education and Research
    Inventors: Zhenkun Lou, Tongzheng Liu
  • Patent number: 11351269
    Abstract: Disclosed are antibodies, including antibody drug conjugates, that specifically bind to NTB-A. Also disclosed are methods for using the anti-NTB-A antibodies to detect or modulate activity of (e.g., inhibit proliferation of) an NTB-A-expressing cell, as well as for diagnoses or treatment of diseases or disorders (e.g., cancer) associated with NTB-A-expressing cells, such as multiple myeloma, non-Hodgkin lymphoma and acute myeloid leukemia.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: June 7, 2022
    Assignee: Seagen Inc.
    Inventors: Timothy Lewis, Lori Westendorf, Django Sussman, Che-Leung Law
  • Patent number: 11344620
    Abstract: Disclosed is a combination comprising an immunomodulator and a second therapeutic agent for use in treating cancer, wherein the immunomodulator is an inhibitor of an immune checkpoint molecule or an activator of a costimulatory molecule, or a combination thereof; and the second therapeutic agent is chosen from one or more of: 1) a c-MET inhibitor; 2) a CDK4/6 inhibitor; 3) a PI3K inhibitor; 4) a BRAF inhibitor; 5) an FGFR inhibitor; 6) a MEK inhibitor, or 7) a BCR-ABL inhibitor. The combination therapies can be used to treat or prevent cancerous conditions and/or disorders.
    Type: Grant
    Filed: September 11, 2015
    Date of Patent: May 31, 2022
    Assignee: Novartis AG
    Inventors: David Lebwohl, Malte Peters
  • Patent number: 11338014
    Abstract: The description provides compositions and methods for treating ETBR-related cancer. In certain aspects, the description provides a delivery system for the controlled, systemic release of at least one of ETBR antagonists, caspase-8 inhibitors, or a combination thereof, optionally including an ETAR antagonist, an anti-PD-1 antibody, a bRAF inhibitor, niacinamide or a combination thereof. The compositions described are useful for the treatment of certain cancers, including, e.g., breast cancer, malignant melanoma, squamous cell carcinoma, glioblastoma, as well as others. In addition, the description provides a delivery system for the controlled release of at least one of ETBR antagonists, caspase-8 inhibitors or a combination thereof, optionally including at least one of an ETAR antagonist, an anti-PD-1 antibody, a bRAF inhibitor, niacinamide, or a combination thereof, to the central nervous system that are useful for treating cancers that have spread to the brain.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: May 24, 2022
    Inventor: Sumayah Jamal
  • Patent number: 11324744
    Abstract: The disclosure relates to pharmaceutical combinations comprising an HDAC6 selective inhibitor and a CD20 inhibitory antibody for the treatment of a B-cell disorder, such as cancer, in a subject in need thereof. Also provided herein are methods for treating a B-cell disorder in a subject in need thereof, comprising administering to the subject an effective amount of an HDAC6 selective inhibitor and a CD20 inhibitory antibody.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: May 10, 2022
    Assignee: Acetylon Pharmaceuticals Inc.
    Inventors: Simon Steward Jones, Chengyin Min, Steven Norman Quayle
  • Patent number: 11306152
    Abstract: The present invention provides a cancer cell-specific anti-podoplanin antibody or an antigen-binding fragment thereof having an epitope in a Thr85-containing region of an amino acid sequence of human podoplanin represented by SEQ ID NO: 1, the Thr85 having a sialylated O-glycan added thereto.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: April 19, 2022
    Assignees: Tohoku University, Zenogen Pharma Co., Ltd.
    Inventors: Yukinari Kato, Mika Kato, Shinji Yamada, Satoshi Ogasawara, Takuro Nakamura
  • Patent number: 11292835
    Abstract: This invention provides a method for treating a subject afflicted with a hematologic malignancy comprising administering to the subject an agent targeting a hematologic malignancy-associated antigen, wherein the subject has a low peripheral cancerous cell burden. This invention also provides a method for treating a subject afflicted with a hematologic malignancy and having a high peripheral cancerous cell burden, comprising (i) medically lowering the subject's peripheral cancerous cell burden, and (ii) while the subject's peripheral cancerous cell burden is still low, administering to the subject an agent targeting a hematologic malignancy-associated antigen. Particularly envisioned are the subject methods for treating acute myeloid leukemia using an anti-CD33 antibody labeled with an alpha-emitting isotope, such as 225Ac-HuM195.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 5, 2022
    Assignee: Actinium Pharmaceuticals, Inc.
    Inventor: Dragan Cicic
  • Patent number: 11291721
    Abstract: Multispecific molecules that include i) a tumor-targeting moiety; and one, two or all of: (ii) an immune cell engager (e.g., chosen from an NK cell engager, a T cell engager, a B cell engager, a dendritic cell engager, or a macrophage cell engager); (iii) a cytokine molecule; and/or (iv) a stromal modifying moiety are disclosed. Additionally disclosed are nucleic acids encoding the same, methods of producing the aforesaid molecules, and methods of treating a cancer using the aforesaid molecules.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 5, 2022
    Assignee: Marengo Therapeutics, Inc.
    Inventors: Andreas Loew, Brian Edward Vash
  • Patent number: 11285195
    Abstract: The pharmaceutical composition for inhibiting expression of CD47 in tumor cells provided by the present invention contains: exosomes produced by cultured tumor cells in an amount effective for inhibiting expression of the CD47; and a pharmaceutically acceptable carrier.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: March 29, 2022
    Inventors: Ikuhiko Nakase, Kosuke Noguchi, Nahoko Baileykobayashi, Tetsuhiko Yoshida
  • Patent number: 11285154
    Abstract: Provided herein are methods and pharmaceutical compositions for treating cancer, in a patient in need thereof, said method comprising administering to said patient an effective amount of an EGFR inhibitor and a TNF inhibitor.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: March 29, 2022
    Assignee: UNITED STATES GOVERNMENT AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventor: Amyn Aziz Habib
  • Patent number: 11278605
    Abstract: The present invention relates to a method for the preparation of an immunogenic lysate from mesothelioma tumor cells, to such a lysate and to dendritic cells loaded with the lysate, the present invention further relates a pharmaceutical composition comprising such lysate or dendritic cells, to the use of the lysate, and to said loaded dendritic cells or said pharmaceutical composition for use in the prevention or treatment of mesothelioma.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: March 22, 2022
    Assignee: AMPHERA B.V.
    Inventors: Josephus Petrus Johannes Jacobus Hegmans, Joan Geertrudis Jacobus Victor Aerts
  • Patent number: 11242365
    Abstract: The present invention provides FOXM1-derived epitope peptides having the ability to induce cytotoxic T cells. The present invention further provides polynucleotides encoding the peptides, antigen-presenting cells presenting the peptides, and cytotoxic T cells targeting the peptides, as well as methods of inducing the antigen-presenting cells or CTLs. The present invention also provides compositions and pharmaceutical compositions containing them as an active ingredient. Further, the present invention provides methods of treating and/or preventing cancer, and/or preventing postoperative recurrence thereof, using the peptides, polynucleotides, antigen-presenting cells, cytotoxic T cells or pharmaceutical compositions of the present invention. Methods of inducing an immune response against cancer are also provided.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: February 8, 2022
    Assignee: ONCOTHERAPY SCIENCE, INC.
    Inventors: Sachiko Yamashita, Tetsuro Hikichi
  • Patent number: 11235064
    Abstract: The present disclosure provides various core constructs. According to embodiments of the present disclosure, the core construct can be used to configure pharmaceutical molecules. In particular, the core construct may be conjugated with a functional element via the click chemistry.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: February 1, 2022
    Assignee: IMMUNWORK INC.
    Inventors: Tse-Wen Chang, Hsing-Mao Chu, Chun-Yu Lin
  • Patent number: 11230609
    Abstract: The present invention provides antibody polypeptides with binding specificity for human kallikrein-2 (hK2), wherein the antibody polypeptide comprises (a) a heavy chain variable region comprising the amino acid sequences of SEQ ID NO:1 and SEQ ID NO:2 and SEQ ID NO:3 and/or (b) a light chain variable region comprising the amino acid sequences of SEQ ID NO:4 and SEQ ID NO:5 and SEQ ID NO:6, and wherein the heavy chain variable region and light chain variable region comprise framework amino acid sequences from one or more human antibodies. The invention further provides use of said antibody polypeptides in the diagnosis and treatment of prostate cancer.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: January 25, 2022
    Assignee: Janssen Biotech, Inc.
    Inventors: Par Oskar Vilhelmsson Timmermand, Amanda Thuy Tran, Sven-Erik Strand, Urpo Juhani Lamminmaki, Kjell Sjostrom
  • Patent number: 11229639
    Abstract: Disclosed herein are novel cytotoxic compounds, and cytotoxic conjugates comprising these cytotoxic compounds and cell-binding agents. More specifically, this disclosure relates to novel camptothecin derivatives thereof, intermediates thereof, conjugates thereof, and pharmaceutically acceptable salts thereof, which are useful as medicaments, in particular as anti-proliferative agents (anticancer agents).
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: January 25, 2022
    Assignee: IMMUNOGEN, INC.
    Inventors: Ravi V. J. Chari, Wayne C. Widdison, Wei Li, David P. Pleynet
  • Patent number: 11224611
    Abstract: The present invention relates to methods for treating a tumor, including a metastatic tumor, with TLR9 agonist in combination with an immune checkpoint inhibitor therapy.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: January 18, 2022
    Assignee: IDERA PHARMACEUTICALS, INC.
    Inventors: Sudhir Agrawal, Daqing Wang, Wayne Jiang
  • Patent number: 11192954
    Abstract: The present invention generally relates to compounds comprising antibodies, antigen-binding fragments thereof, polypeptides, and immunoconjugates that bind to TROP2 (TACSTD2). The present invention also relates to methods of using such TROP2-binding molecules for diagnosing and treating diseases, such as malignancies.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: December 7, 2021
    Assignee: Bio-Thera Solutions, Ltd.
    Inventors: Weijia Tang, Xiaoyang Huang, Jin-Chen Yu, Ziqiang Ou, Xian Peng, Yili Yang, Shengfeng Li, Chao Qin
  • Patent number: 11191844
    Abstract: The present disclosure provides multispecific antigen-binding molecules and uses thereof. The multispecific antigen-binding molecules comprise a first antigen-binding domain that specifically binds a target molecule, and a second antigen-binding domain that specifically binds an internalizing effector protein. The multispecific antigen-binding molecules of the present disclosure can, in some embodiments, be bispecific antibodies that are capable of binding both a target molecule and an internalizing effector protein. In certain embodiments of the disclosure, the simultaneous binding of the target molecule and the internalizing effector protein by the multispecific antigen-binding molecule of the present disclosure results in the attenuation of the activity of the target molecule to a greater extent than the binding of the target molecule alone.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: December 7, 2021
    Assignee: Regeneran Pharmaceuticals, Inc.
    Inventors: Julian Andreev, Nithya Thambi, Frank Delfino, Joel Martin, Gavin Thurston, Katherine Cygnar, Nicholas Papadopoulos