Patents Examined by Karla Moore
  • Patent number: 10570516
    Abstract: A deposition system and method includes a deposition source, a roll conveyor and at least one shield positioned at a location proximate to the deposition source.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: February 25, 2020
    Assignee: First Solar, Inc.
    Inventor: Rick C. Powell
  • Patent number: 10570511
    Abstract: Apparatus and methods for spatial atomic layer deposition including at least one first exhaust system and at least one second exhaust system. Each exhaust system including a throttle valve and a pressure gauge to control the pressure in the processing region associated with the individual exhaust system.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: February 25, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Ning Li, Steven D. Marcus, Tai T. Ngo, Kevin Griffin
  • Patent number: 10570517
    Abstract: Embodiments of the present invention provide apparatus and methods for performing UV treatment and chemical treatment and/or deposition in the same chamber. One embodiment of the present invention provides a processing chamber including a UV transparent gas distribution showerhead disposed above a substrate support located in an inner volume of the processing chamber, a UV transparent window disposed above the UV transparent gas distribution showerhead, and a UV unit disposed outside the inner volume. The UV unit is configured to direct UV lights towards the substrate support through the UV transparent window and the UV transparent gas distribution showerhead.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amit Bansal, Dale R. Du Bois, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Scott A. Hendrickson, Thomas Nowak
  • Patent number: 10550468
    Abstract: A substrate processing apparatus includes a transfer chamber; an upper gas supply mechanism for supplying a gas into an upper region of the transfer chamber through a first gas supply port; and a lower gas supply mechanism configured to supply the gas into a lower region of the transfer chamber through a second gas supply port. The upper gas supply mechanism includes a first buffer chamber at a back surface of the first gas supply port; a pair of upper ducts at both sides of the first buffer chamber; and a first ventilation unit at lower ends of the pair of upper ducts. The lower gas supply mechanism includes a second buffer chamber at a back surface of the second gas supply port; a lower duct at lower surface of the second buffer chamber; and a second ventilation unit at a lower end of the lower duct.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: February 4, 2020
    Assignee: Kokusai Electric Corporation
    Inventors: Takayuki Nakada, Tomoshi Taniyama, Kenji Shirako
  • Patent number: 10544508
    Abstract: An apparatus for plasma processing a substrate is provided. The apparatus comprises a processing chamber, a substrate support disposed in the processing chamber, and a lid assembly coupled to the processing chamber. The lid assembly comprises a conductive gas distributor such as a face plate coupled to a power source, and a heater coupled to the conductive gas distributor. A zoned blocker plate is coupled to the conductive gas distributor and a cooled gas cap is coupled to the zoned blocker plate. A tuning electrode may be disposed between the conductive gas distributor and the chamber body for adjusting a ground pathway of the plasma. A second tuning electrode may be coupled to the substrate support, and a bias electrode may also be coupled to the substrate support.
    Type: Grant
    Filed: September 24, 2013
    Date of Patent: January 28, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Juan Carlos Rocha-Alvarez, Amit Kumar Bansal, Ganesh Balasubramanian, Jianhua Zhou, Ramprakash Sankarakrishnan
  • Patent number: 10535868
    Abstract: A system and method of forming a thin film battery includes a substrate, a first current collector formed on the substrate, a cathode layer formed on a portion of the first current collector, a solid layer of electrolyte material formed on the cathode layer, a silicon-metal thin film anode layer formed on the solid layer of electrolyte material and a second current collector electrically coupled to the silicon-metal thin film anode layer. A method and a system for forming the thin film battery are also disclosed.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: January 14, 2020
    Assignee: APPLEJACK 199 L.P.
    Inventors: Wenming Li, Byunghoon Yoon, Ann Koo
  • Patent number: 10529577
    Abstract: The present invention relates to a device of changing the gas flow pattern in the process chamber and a wafer processing method and system; a gas introduced from the gas inlet to the process chamber will process the wafer in the process chamber; a gas center ring is set in the process chamber to adjust the gas flow pattern, which includes a fixed component under the gas inlet and above the wafer, and a movable ring could locate in the first position or the second position respectively; when the movable ring is in the first position, the gas is delivered downwards to the wafer via the first opening set on the fixed component; when the movable ring is in the second position, the gas is delivered downwards to the wafer via the second opening set on the movable ring.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: January 7, 2020
    Assignee: ADVANCED MICRO-FABRICATION EQUIPMENT INC. CHINA
    Inventors: TuQiang Ni, ZhiLin Huang
  • Patent number: 10522330
    Abstract: Provided herein are approaches for in-situ plasma cleaning of one or more components of an ion implantation system. In one approach, the component may include a beam-line component having one or more conductive beam optics. The system further includes a power supply for supplying a first voltage and first current to the component during a processing mode and a second voltage and second current to the component during a cleaning mode. The second voltage and current may be applied to the conductive beam optics of the component, in parallel, to selectively (e.g., individually) generate plasma around one or more of the one or more conductive beam optics. The system may further include a flow controller for adjusting an injection rate of an etchant gas supplied to the component, and a vacuum pump for adjusting pressure of an environment of the component.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: December 31, 2019
    Assignee: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Kevin Anglin, William Davis Lee, Peter Kurunczi, Ryan Downey, Jay T. Scheuer, Alexandre Likhanskii, William M. Holber
  • Patent number: 10510625
    Abstract: An apparatus for supporting a wafer during a plasma processing operation includes a pedestal configured to have bottom surface and a top surface and a column configured to support the pedestal at a central region of the bottom surface of the pedestal. An electrical insulating layer is disposed over the top surface of the pedestal. An electrically conductive layer is disposed over the top surface of the electrical insulating layer. At least three electrically conductive support structures are distributed on the electrically conductive layer. The at least three support structures are configured to interface with a bottom surface of a wafer to physically support the wafer and electrically connect to the wafer. An electrical connection extends from the electrically conductive layer to connect with a positive terminal of a direct current power supply at a location outside of the pedestal.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: December 17, 2019
    Assignee: Lam Research Corporation
    Inventors: Yukinori Sakiyama, Edward Augustyniak, Douglas Keil
  • Patent number: 10494714
    Abstract: The present invention provides chucks having a well that supports rods produced during chemical vapor deposition. The chucks can utilize slats and windows around the well up to which the rod can grow and become supported.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: December 3, 2019
    Assignee: OCI COMPANY LTD.
    Inventor: Wenjun Qin
  • Patent number: 10490436
    Abstract: Implementations disclosed herein generally provide a lift pin that can improve the deposition rate and uniform film thickness above lift pin areas. In one implementation, the lift pin includes a first end coupling to a shaft, the first end having a pin head, and the pin head having a top surface, wherein the top surface is planar and flat, and a second end coupling to the shaft, the second end having a flared portion, wherein the flared portion has an outer surface extended along a direction that is at an angle of about 110° to about 140° with respect to a longitudinal axis of the lift pin.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: November 26, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kalyanjit Ghosh, Mayur G. Kulkarni, Sanjeev Baluja, Praket P. Jha, Krishna Nittala
  • Patent number: 10490427
    Abstract: A substrate treating apparatus is provided which includes a treating container of which a top end is opened, a substrate support unit placed in a treating container to support a substrate, a treatment solution supply unit supplying a treatment solution to a substrate put on the support unit, and a heating unit placed in the substrate support unit to heat the substrate. The heating unit includes a heating element and a reflection element reflecting a heat from the heating element upward.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: November 26, 2019
    Assignee: SEMES CO., LTD.
    Inventors: Jung Bong Choi, Seong Soo Kim, Chan-Young Heo, Oh Jin Kwon
  • Patent number: 10460949
    Abstract: There is provided a substrate processing apparatus of performing a predetermined substrate process on a plurality of target substrates under a vacuum atmosphere, including: a plurality of processing parts each configured to perform the substrate process on each of the plurality of target substrates; a gas supply mechanism configured to supply a processing gas to each of the plurality of processing parts; a single exhaust mechanism configured to exhaust the processing gas within the plurality of processing parts; and a control part configured to control the single exhaust mechanism to collectively exhaust the processing gas within the plurality of processing parts, and control the gas supply mechanism to separately supply the processing gas into each of the plurality of processing parts such that a difference between internal pressures of the plurality of processing parts is prevented.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: October 29, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hiroyuki Takahashi, Kazunori Kazama, Noriyuki Iwabuchi, Satoshi Toda, Tetsuro Takahashi
  • Patent number: 10460950
    Abstract: There is provided a substrate processing system including an etching apparatus configured to supply a gas containing fluorocarbon to generate plasma so as to perform an etching process on a film including silicon formed on a substrate, wherein the etching process is performed by using plasma through a mask formed on the film including silicon, a film forming apparatus configured to supply a gas containing carbon so as to form a film including carbon on the etched film including silicon.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: October 29, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Akinobu Kakimoto, Yoshinobu Hayakawa, Satoshi Mizunaga, Yasuhiro Hamada, Mitsuhiro Okada
  • Patent number: 10431480
    Abstract: A method and apparatus for processing a semiconductor is disclosed herein. In one embodiment, a processing system for semiconductor processing is disclosed. The processing chamber includes two transfer chambers, a processing chamber, and a rotation module. The processing chamber is coupled to the transfer chamber. The rotation module is positioned between the transfer chambers. The rotation module is configured to rotate the substrate. The transfer chambers are configured to transfer the substrate between the processing chamber and the transfer chamber. In another embodiment, a method for processing a substrate on the apparatus is disclosed herein.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: October 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Tuan Anh Nguyen, Amit Kumar Bansal, Juan Carlos Rocha-Alvarez
  • Patent number: 10415137
    Abstract: Gas distribution assemblies and processing chambers using same are described. The gas distribution assemblies comprise a cooling plate with a quartz puck, a plurality of reactive gas sectors and a plurality of purge gas sectors suspended therefrom. The reactive gas sectors and purge gas sectors having a coaxial gas inlet with inner tubes and outer tubes, the inner tubes and outer tubes in fluid communication with different gas or vacuum ports in the front faces of the sectors. The sectors may be suspended from the cooling plate by a plurality of suspension rods comprising a metal rod body with an enlarged lower end positioned within a quartz frame with a silicon washer around the enlarged lower end.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: September 17, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Alexander S. Polyak, Joseph Yudovsky
  • Patent number: 10415138
    Abstract: A gas injector system is provided that allows for improved distribution and directional control of the vapor material in a CVD or CVI process. Gas injector systems may be used without experiencing significant clogging of gas injector tube apertures over multiple CVD procedures. Further, a gas injector system provided includes a dual aperture release system and/or allow vapor material to flow both substantially horizontally and substantially vertically.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: September 17, 2019
    Assignee: Goodrich Corporation
    Inventor: Vincent Fry
  • Patent number: 10409306
    Abstract: Implementations disclosed herein relate to methods and apparatus for zoned temperature control during a film forming process. In one implementation, a substrate processing apparatus is provided. The substrate processing apparatus comprises a vacuum chamber, a plurality of power supplies coupled with the plurality of thermal laps and a controller that adjusts the power supplies based on input from radiation sensors. The chamber includes a sidewall defining a processing region. A plurality of thermal lamps is positioned external to the processing region. A window is positioned between the plurality of thermal lamps and the processing region. A radiation source is disposed within the sidewall and oriented to direct radiation toward an area proximate a substrate support. A radiation sensor is disposed on the side of the substrate support opposite the plurality of thermal lamps to receive emitted radiation from the radiation source.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: September 10, 2019
    Assignee: Applied Materials, Inc.
    Inventor: Joseph M. Ranish
  • Patent number: 10403532
    Abstract: The present disclosure provides one embodiment of a semiconductor processing apparatus. The semiconductor processing apparatus includes a load lock designed to receive a wafer carrier; an inner wafer carrier buffer configured to hold the wafer carrier received from the load lock and to perform a nitrogen purge to the wafer carrier; and a processing module designed to perform a semiconductor process to wafers from the wafer.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: September 3, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jason Shen, Wen-Yu Huang, Li-Jen Ko, Hsiang Yin Shen
  • Patent number: 10388546
    Abstract: Provided are methods and apparatus for ultraviolet (UV) assisted capillary condensation to form dielectric materials. In some embodiments, a UV driven reaction facilitates photo-polymerization of a liquid phase flowable material. Applications include high quality gap fill in high aspect ratio structures and por sealing of a porous solid dielectric film. According to various embodiments, single station and multi-station chambers configured for capillary condensation and UV exposure are provided.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: August 20, 2019
    Assignee: Lam Research Corporation
    Inventors: Jonathan D. Mohn, Nicholas Muga Ndiege, Patrick A. Van Cleemput, David Fang Wei Chen, Wenbo Liang, Shawn M. Hamilton