Patents Examined by Karthik Subramanian
  • Patent number: 8752390
    Abstract: Both power and H2 are produced from a gaseous mixture, comprising H2 and CO2, using first and second pressure swing adsorption (PSA) systems in series. The gaseous mixture is fed at super-atmospheric pressure to the first PSA system, which comprises adsorbent that selectively adsorbs CO2 at said pressure, and CO2 is adsorbed, thereby providing an H2-enriched mixture at super-atmospheric pressure. A fuel stream is formed from a portion of the H2-enriched mixture, which is combusted and the combustion effluent expanded to generate power. Another portion of the H2-enriched mixture is sent to the second PSA system, which comprises adsorbent that selectively adsorbs CO2 at super-atmospheric pressure, and CO2 is adsorbed, thereby providing a high purity H2 product. In preferred embodiments, the division of H2-enriched mixture between forming the fuel stream and being fed to the second PSA system is adjustable.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: June 17, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Jeffrey Raymond Hufton, Vincent White, Timothy Christopher Golden
  • Patent number: 8739544
    Abstract: A staging valve arrangement is described that comprises an arrangement of electrically driven staging valves that are located, in use, in the high temperature core zone of an engine. Each staging valve may comprise a housing having an inlet, a pilot flow outlet and a mains flow outlet, a valve member movable between a closed position in which the mains flow outlet is closed and an open position in which the mains flow outlet is open, a motor operable to drive the valve member for movement, and a cooling arrangement.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: June 3, 2014
    Assignee: Rolls-Royce Controls and Data Services Limited
    Inventors: Neil Rawlinson, Michael Robert Lyons, William Keith Bradbury, Laurence Alden, Blair Ramsay, Mark Scully
  • Patent number: 8733109
    Abstract: A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: May 27, 2014
    Assignee: Gas Technology Institute
    Inventors: Iosif K. Rabovitser, John M. Pratapas, Dmitri Boulanov
  • Patent number: 8689535
    Abstract: Disclosed herein are screw shaft turbine compressors having (i) a compressor section, (ii) a turbine section, (iii) a combustion section coupling to the compressor section and the turbine section, and (iv) a grooved shaft. The grooved shaft can include one or more grooves for providing fuel from the compressor section to the combustion section and for allowing exhaust to leave the combustion section and exit the turbine section. A method for generating different speed to torque ratios on the shaft and a system for generating torque on the shaft are further disclosed.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 8, 2014
    Inventor: John R. Jackson
  • Patent number: 8689565
    Abstract: A combined cycle power generation plant can include at least one gas turbine and at least one steam turbine. A method for providing Asymmetric Joint Control for Primary Frequency Regulation (PFR) in the combined cycle power generation plant can include the use of the spinning energy existing in the high pressure steam to rapidly supply additional power to the steam turbine for PFR service within the time frame established as a requirement to participate in the PFR service. The PFR control method can be carried out by controlling flow of high pressure steam to a medium pressure steam circuit through a bypass.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: April 8, 2014
    Assignee: Petrobras Energia S.A.
    Inventors: Benjamin Guzman, Jorge Vugdelija, Julio Aguirre
  • Patent number: 8661832
    Abstract: The present invention relates to control of engine variable of a gas turbine engine to regulate the surge margins of at least two compressors. A controller (20) receives data measured from engine sensors (22, 23) and uses said data to determine an indication of surge margin for each of at least two compressors (6, 7) of the gas turbine engine. The controller (20) uses the indications of surge margin for each of the compressors to determine a control strategy that balances the requirements of each compressor. In one embodiment a surge margin operating map divided into different control domains (40, 43, 43) is used. The indication of surge margin determined for each compressor is plotted to determine which control domains the current operating point on the surge margin operating map falls within.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: March 4, 2014
    Assignee: Rolls-Royce PLC
    Inventors: Ian A. Griffin, Arthur L. Rowe
  • Patent number: 8601820
    Abstract: A late lean injection sleeve assembly allows the injection of fuel at the aft end of a gas turbine liner, before the transition piece, into the combustion gases downstream of a turbine combustor's fuel nozzles. The late lean injection enables fuel injection downstream of the fuel nozzles to create a secondary/tertiary (with quaternary injection upstream of the fuel nozzles) combustion zone while reducing/eliminating the risk of fuel leaking into the combustor discharge case. The fuel is delivered by the flow sleeve into one or more nozzles that mix the fuel with CDC air before injecting it into the combustor's liner.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: December 10, 2013
    Assignee: General Electric Company
    Inventors: William Byrne, Patrick Benedict Melton, David William Cihlar, Lucas Stoia
  • Patent number: 8590308
    Abstract: Problems can arise with regard to noise created by bleed valve arrangements in gas turbine engines. It is known to utilize pressure differential inducing elements such as pepper pots and perforated surfaces in order to attenuate noise from bleed valves. However, these arrangements tend to have a portion which expands such that the exit aperture into a bypass duct wall can significantly affect mechanical strength and operational performance. By providing internally created pepper pots or other pressure differential inducing elements within a path of an arrangement and a constriction to an exit noise attenuation is still achieved but with less detrimental effect with regard to bypass duct wall strength and aerodynamic losses altering operational performance.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: November 26, 2013
    Assignee: Rolls-Royce PLC
    Inventor: Stuart J. Kirby
  • Patent number: 8572975
    Abstract: A combustion turbine engine that includes: a compressor; a combustor that receives fuel from a fuel line; a turbine; a heat exchange portion comprising a portion of the fuel line in heat transfer relationship with a heat source for heating the fuel; a rapid heating value meter disposed to test the heating value of the fuel that is configured to provide heating value test results within approximately 1 minute; a cold leg bypass comprising a fuel line that bypasses the heat exchange portion, the cold leg bypass being connected to the fuel line at an upstream fork and at a fuel mixing junction; and valves for controlling the fuel being directed through the heat exchange portion and the fuel being direct through the cold leg bypass; wherein the length of fuel line between the fuel mixing junction and the combustor is less than 20 meters.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: November 5, 2013
    Assignee: General Electric Company
    Inventors: Timothy R. Bilton, Dean M. Erickson, Brian M. Gallagher, Korey F. Rendo, John V. Hains
  • Patent number: 8567201
    Abstract: A fuel system including a fuel pump metering unit (FPMU) for delivering fuel to an engine manifold with an ecology valve for draining and storing fuel from the engine manifold. The ecology valve includes a housing having a piston dividing the housing into a first side in fluid communication with an output of the FPMU and a second side in fluid communication with the engine manifold. An assembly connected between the FPMU and engine manifold selectively creates a pressure differential across the first and second side of the housing when the FPMU delivers fuel to the engine manifold. In a run position, the piston moves to decrease a volume within the housing interior as a result of the pressure differential. In a drain position, the piston moves to increase the housing volume within the interior and thereby pull and store fuel from the engine manifold.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: October 29, 2013
    Assignee: Triumph Engine Control Systems, LLC
    Inventor: William H. Dalton
  • Patent number: 8534076
    Abstract: A combustor-turbine seal interface is provided for deployment within a gas turbine engine. In one embodiment, the combustor-turbine assembly a combustor, a turbine nozzle downstream of the combustor, and a first compliant dual seal assembly. The first compliant dual seal assembly includes a compliant seal wall sealingly coupled between the combustor and the turbine nozzle, a first compression seal sealingly disposed between the compliant seal wall and the turbine nozzle, and a first bearing seal generally defined by the compliant seal wall and the turbine nozzle. The first bearing seal is sealingly disposed in series with the first compression seal.
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: September 17, 2013
    Assignee: Honeywell Internationl Inc.
    Inventors: Gregory O. Woodcock, Bradley Reed Tucker, Jason Smoke, Stony Kujala, Terrel Kuhn
  • Patent number: 8528316
    Abstract: Systems and methods of controlling solid propellant gas pressure and vehicle thrust are provided. Propellant gas pressure and a vehicle inertial characteristic are sensed. Propellant gas pressure commands and vehicle thrust commands are generated. A propellant gas pressure error is determined based on the propellant gas pressure commands and the sensed propellant gas pressure, and vehicle thrust error is determined based on the vehicle thrust commands and the sensed vehicle inertial characteristic. Reaction control valves are moved between closed and full-open positions based on the determined propellant gas pressure error and on the determined vehicle thrust error. The system and method allow the reaction control valves to operate at variable frequencies or at fixed frequencies. The system and method also allows propellant pressure to be commanded to follow a predetermined pressure profile or commanded to vary “on-the-fly.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: September 10, 2013
    Assignee: Honeywell International Inc.
    Inventors: Mark H. Baker, Steve Abel, George Woessner
  • Patent number: 8528317
    Abstract: A method and a system for detecting the ingestion of an object by an aircraft turbine engine during a mission is disclosed. The method includes: acquiring during the mission digital images of the operating fan of the turbine engine, these images being acquired at an acquisition frequency proportional to the speed of rotation of the fan and to the number of blades of the fan; identifying the different phases of the mission of the aircraft for each phase of the mission; comparing the images of the fan with at least one reference image corresponding to sound operation of the fan; and, if necessary, identifying each abnormal image of the fan which differs from the corresponding reference image, the identification of an abnormal image of the fan corresponding to the crossing of an alert level for detecting the ingestion of an object by the turbine engine.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: September 10, 2013
    Assignee: SNECMA
    Inventors: Valerio Gerez, Claude Alain Mazur
  • Patent number: 8511056
    Abstract: Breather air, containing oil mist, is discharged from a nacelle 4 of a gas turbine engine through an exhaust port 26 at a surface 22 of the nacelle 4. Energized air, at relatively high velocity is discharged from a clean air outlet 28, and forms a barrier between the breather air and the external surface 22, so preventing contamination of the surface 22 by oil deposited from the breather air.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: August 20, 2013
    Assignee: Rolls-Royce PLC
    Inventors: Brian A Handley, Andrew J Mullender, Zahid M Hussain
  • Patent number: 8511057
    Abstract: There is disclosed a lubricant scavenge arrangement provided on a chamber having an outer wall and configured to house a lubricated rotative component for rotation about an axis. The scavenge arrangement comprises: a substantially elongate channel provided in a substantially arcuate region of the wall, the channel being open to the chamber over substantially its entire length between an inlet end and an outlet end, said inlet end and said outlet end being angularly spaced apart around said longitudinal axis. The scavenge arrangement is particularly suited to use on bearing chambers in gas turbine engines.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 20, 2013
    Assignee: Rolls-Royce PLC
    Inventors: Neil R. Fomison, Marc Tittel
  • Patent number: 8434311
    Abstract: A system for controlling NOx emissions and combustion pulsation levels of a gas turbine having a gas turbine combustion system, having a single combustion chamber and multiple burners, includes a cascade structure having a first and second control level (1, 2), the first level (1) having a device to control NOx emissions and generate combustion pulsation target levels based on the difference between measured and target NOx emission levels, and the second level (2) having a device to control pulsation levels and generate a ratio (?) of fuel flow to different types of burners or to different stages of each burner. The fuel flow ratio (?) is based on the difference between the measured and generated target pulsation levels. The control system enables the operation of a gas turbine to meet NOx emission requirements, while maintaining combustion pulsation levels within limits that ensure improved lifetime of the combustion system.
    Type: Grant
    Filed: April 27, 2009
    Date of Patent: May 7, 2013
    Assignee: ALSTOM Technology Ltd.
    Inventors: Xiao-Yi Zhang, Tobias Spitzmueller, Stefano Bernero
  • Patent number: 8434312
    Abstract: In a method for the low-CO emissions part load operation of a gas turbine with sequential combustion, the air ratio (?) of the operative burners (9) of the second combustor (15) is kept below a maximum air ratio (?max) at part load In order to reduce the maximum air ratio (?), a series of modifications in the operating concept of the gas turbine are carried out individually or in combination. One modification is an opening of the row of variable compressor inlet guide vanes (14) before engaging the second combustor (15). For engaging the second combustor, the row of variable compressor inlet guide vanes (14) is quickly closed and fuel is introduced in a synchronized manner into the burner (9) of the second combustor (15). A further modification is the deactivating of individual burners (9) at part load.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 7, 2013
    Assignee: ALSTOM Technology Ltd.
    Inventors: Adnan Eroglu, Klaus Knapp, Peter Flohr, Hans Peter Knöpfel, Weiqun Geng
  • Patent number: 8429890
    Abstract: A retractable deflector to deflect birds and debris from an air intake duct of an aircraft jet engine. The duct has a central longitudinal axis and a forward opening for air receipt. The deflector includes a plurality of elongate first support members disposed on the duct having leading ends which extend from a perimeter of the opening, mounted for movement to extend and retract the leading ends. A second support member is coupled to these leading ends to retain them in spaced relation. The second support member is extendible in length and configured to hold the leading ends of the first support members sufficiently close together to cause the first support members to deflect at least one of a bird and debris when deployed, and to allow the leading ends to maintain a spaced-apart relation along a line which approximately corresponds to the perimeter of the duct when retracted.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: April 30, 2013
    Inventor: Jeffrey A. Matos
  • Patent number: 8402767
    Abstract: At least one solid mass of oxidizing-species-releasing material (ORM), selected as a solid oxidizer (SO), and/or as oxidizing-species-releasing burning substance (ORBS) is used as a device for enhancing the starting process of a turbine engine under various ambient conditions. The ORM is introduced into the combustion chamber of the turbine engine and the starting process of the turbine engine is initiated, by help of the igniter and in association with the ORM to enhance the starting process. In operation, an ORM selected as an SO releases gaseous oxygen when heated to decompose, while an ORM chosen as an ORBS discharges oxidizing species when ignited to burn. An ORM such as an SO or an ORBS may operate alone or in various combinations of both. The ORM is configured to release a predetermined mass flow rate of oxidizing species or of gaseous oxygen.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 26, 2013
    Assignee: Rafael-Advanced Defense Systems, Ltd.
    Inventors: Amichay H. Gross, Savely Khosid, Arie Peretz
  • Patent number: 8397515
    Abstract: A combustor of a turbine engine having a combustion zone defined therein is provided and includes a fuel nozzle, including two or more burners, each of the burners having a passage defined therein through which combustible materials are permitted to travel toward the combustion zone, a plurality of sensors disposed in relative association with each of the burners to respectively sense static pressures within the passages of each of the burners and to respectively issue sensed static pressure signals accordingly, and a controller, coupled to the sensors and receptive of the signals, which is configured to determine from an analysis of the signals whether any of the burners are associated with a flashback risk and to mitigate the flashback risk in accordance with the determination.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventor: Garth Curtis Frederick