Patents Examined by Katherine L Fernandez
  • Patent number: 10932759
    Abstract: In the ultrasound diagnostic apparatus, the ultrasonic wave transmitter/receiver transmits and receives an ultrasonic beam to a subject to generate reception data using ultrasonic wave transmission/reception elements arranged in one direction; the delay correction unit corrects a delay time of the reception data to align a phase of the reception data; the reception aperture range determination unit determines a reception aperture range of reception data, which is used when producing an ultrasound image from reception data after correction of the delay time, based on a signal value of the reception data after correction of the delay time in an arrangement direction of the ultrasonic wave transmission/reception elements; and the image producer produces an ultrasound image by performing phase matching addition of the reception data after correction of the delay time corresponding the reception aperture range and performing data processing.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 2, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Hiroaki Yamamoto
  • Patent number: 10908238
    Abstract: A magnetic resonance (MR) coil unit, comprising: —an MR coil body which houses at least one MR coil, the MR coil body having a front surface for facing a patient, a reverse surface opposite to the front surface, and at least one opening through the MR coil body which connects the front and reverse surfaces; —at least one MR marker located at least partly in said at least one opening in the MR coil body; and—at least one optical marker located above the reverse surface of the MR coil body.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: February 2, 2021
    Assignees: BRAINLAB AG, SIEMENS AKTIENGESELLSCHAFT, PRO MED INSTRUMENTS GMBH
    Inventors: Patrick Gross, Tilman Niederführ, Brian Vasey, Nadja Heindl, Dimitrios Sapnaras
  • Patent number: 10905330
    Abstract: The subject matter disclosed herein describes an improved MR imaging system for breast tissue. The MR imaging system includes a pair of antenna coil arrays that are movable with respect to a base plate on which the coil arrays are mounted. A fixed coil array may also be mounted in a medial location on the base plate. The MR imaging system provides an abdominal support structure and a head support structure to position a patient in a prone position over the movable and fixed coil arrays. An additional support pad may be provided on the upper surface of the medial coil to support the patient's chest. Each of the movable antenna coil arrays may be moved laterally along the base plate to adjust the space between the two arrays. Once adjusted, each of the movable antenna coil arrays may be secured in the adjusted position to immobilize the breast tissue.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: February 2, 2021
    Assignee: NeoCoil, Inc.
    Inventors: Kyle Johnson, Brian Brown, Chris Salimes, Emad Abdelsalam
  • Patent number: 10898165
    Abstract: The present invention provides an article or an interface having a distribution of a first partially spherical indentation and at least a second partially spherical indentation contained within the first indentation to form a multi-component or “compound” shape that is referred to as a “compound” or “nested” dimples or indentations. These compound dimples or indentions may be concentric and are etched or otherwise formed into a surface or interface of an article to enhance the ultrasonic imaging. Exemplary articles may be needles of the type used to conduct nerve blocks or the interface may be the surface of such a needle, cannula, catheter, catheter tip or similar article.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: January 26, 2021
    Assignee: Avent, Inc.
    Inventors: Alfred C. Coats, Louis Lupin
  • Patent number: 10888303
    Abstract: A method for forming a contrast pulse sequence ultrasound image using a pulse width modulation scheme and an ultrasound system using the same are disclosed. The ultrasound system generates at least three kinds of mutually different pulses having a same amplitude, and sequentially transmits at least three kinds of transmission signals corresponding to the at least three kinds of mutually different pulses to an ultrasound transducer. The ultrasound transducer transmits at least three kinds of ultrasound signals to a target object by sequentially generating the at least three kinds of ultrasound signals based on the at least three kinds of transmission signals. The ultrasound transducer generates at least three kinds of reception signals by sequentially receiving at least three kinds of echo signals reflected from the target object. The ultrasound system forms a contrast pulse sequence ultrasound image by eliminating a linear component from the at least three kinds of reception signals.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: January 12, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: SangSin Lee, DongYoung Choi
  • Patent number: 10874366
    Abstract: A mammography installation includes a first compression device; a second compression device including an integrated X-ray detector; an X-ray emitter; a support device, arranged at the first compression device or at the second compression device, and including an integrated ultrasound transducer, the support device and the integrated ultrasound transducer being designed to be deformable so as to be adaptable to the breast of a patient, the integrated ultrasound transducer being arranged on an elastic substrate; and a breast locating region, provided between the support device and the first compression device or the second compression device that is situated opposite the first compression device or the second compression device at which the support device is arranged. The breast of the patient is positionable in the breast locating region. Further, the integrated ultrasound transducer is oriented in a direction of the breast locating region.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: December 29, 2020
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Peter Michael Dueppenbecker, Marcus Radicke, Oliver Schmidt
  • Patent number: 10874878
    Abstract: The present disclosure relates to a particle therapy apparatus for irradiating a target with a charged particle beam. In one implementation, the apparatus includes an isocentric gantry rotatable about an axis and configured to direct a particle beam towards an isocenter of gantry and according to a final beam direction, a magnetic resonance imaging system configured to generate a main magnetic field parallel to the final beam direction, and a passive magnetic shield surrounding the magnetic resonance imaging system, the passive magnetic shield and the magnetic resonance imaging system being synchronously rotatable with the gantry about the axis.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: December 29, 2020
    Assignee: Ion Beam Applications S.A.
    Inventor: Caterina Brusasco
  • Patent number: 10856749
    Abstract: A monitoring device includes a biasing element having opposite first and second end portions, an earbud attached to the biasing element first end portion, and a sensing element attached to the biasing element second end portion. The earbud has a first mass, and the sensing element has a second mass that is less than the first mass. The biasing element is configured to urge the sensing element into contact with a portion of the ear when the earbud is inserted into the ear. The biasing element decouples motion of the earbud from the sensing element. The sensing element includes at least one energy emitter configured to direct energy at a target region of the ear and at least one detector configured to detect an energy response signal from the target region or a region adjacent the target region.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: December 8, 2020
    Assignee: Valencell, Inc.
    Inventors: Steven Matthew Just, Jesse Berkley Tucker, Robert Splinter, Steven Francis LeBoeuf
  • Patent number: 10856840
    Abstract: A universal ultrasound device having an ultrasound includes a semiconductor die; a plurality of ultrasonic transducers integrated on the semiconductor die, the plurality of ultrasonic transducers configured to operate a first mode associated with a first frequency range and a second mode associated with a second frequency range, wherein the first frequency range is at least partially non-overlapping with the second frequency range; and control circuitry configured to: control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the first frequency range, in response to receiving an indication to operate the ultrasound probe in the first mode; and control the plurality of ultrasonic transducers to generate and/or detect ultrasound signals having frequencies in the second frequency range, in response to receiving an indication to operate the ultrasound probe in the second mode.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: December 8, 2020
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Susan A. Alie, Nevada J. Sanchez, Tyler S. Ralston, Christopher Thomas McNulty, Jaime Scott Zahorian, Paul Francis Cristman, Matthew de Jonge, Keith G. Fife
  • Patent number: 10849546
    Abstract: Discussed herein is a parametric model for DTI MD histogram fitting, named the Generalized Voss-Dyke function, which is highly successful in segregating NPH cases from potential confounders without reliance on operator dependent region-of-interest analyses or inter-subject registration. The Generalized Voss-Dyke function is useful for managing the imaging of any tissue interfaces.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: December 1, 2020
    Assignee: CORNELL UNIVERSITY
    Inventors: Milos Ivkovic, Norman Relkin, Henning U. Voss, Jonathan P. Dyke
  • Patent number: 10842464
    Abstract: Apparatus and method comprising an ultrasound transmitter, for placement at a first location on the body of a subject, to emit an ultrasound pulse; an ultrasound receiver, for placement at a second location on the body, to detect an emitted ultrasound pulse; and a controller in communication with the transmitter and receiver. The controller causes an ultrasound pulse to be emitted by the transmitter; receives a measurement signal from the receiver; determines, based on the received measurement signal, a time of arrival at the receiver, T1 s of a first part of the emitted ultrasound pulse; determines, based on the received measurement signal, a time of arrival at the receiver, T2, of a second part of the ultrasound pulse; and calculates, using T1 and T2, a flow velocity of blood in a blood vessel between the first location and the second location.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: November 24, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Nicolaas Lambert, Bart Kroon, Alexander Franciscus Kolen, Denny Mathew, Rick Bezemer
  • Patent number: 10835151
    Abstract: A sensor assembly includes a substrate including a first portion, a second portion, and a rolled section positioned between the first portion and the second portion. The sensor assembly further includes a first magnetic field sensor coupled to the first portion. The first magnetic field sensor has a primary sensing direction aligned with a longitudinal axis of the sensor assembly. The sensor assembly further includes a second magnetic field sensor coupled to the second portion. The rolled section is shaped such that the second magnetic field sensor is oriented with respect to the first magnetic field sensor so that the second magnetic field sensor has a primary sensing direction aligned with an axis orthogonal to the longitudinal axis.
    Type: Grant
    Filed: February 5, 2018
    Date of Patent: November 17, 2020
    Assignee: Boston Scientific Scimed Inc.
    Inventors: James E. Blood, Daniel J. Foster, Steven J. Meyer, David A. Chizek
  • Patent number: 10835200
    Abstract: An ultrasound diagnosis apparatus according to an embodiment includes Doppler processing circuitry and processing circuitry. The Doppler processing circuitry filters a data sequence of reflected-wave data at the same positions across a plurality of frames in a frame direction to collect blood flow information in a predetermined region of interest. The processing circuitry receives a first instruction to change the range of flow rate values to be displayed, in display of the blood flow information. The processing circuitry receives a second instruction to change a setting related to the region of interest. The processing circuitry changes the range of flow rate values in response to the first instruction when receiving the first instruction, and performs an adjustment for maintaining the range of flow rate values when receiving the second instruction.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: November 17, 2020
    Assignee: Canon Medical Systems Corporation
    Inventor: Chihiro Shibata
  • Patent number: 10835202
    Abstract: A system and method for determining tissue changes. Shear waves are transmitted across the tissue in response to an ultrasonic signal input exterior to the tissue surface. Adaptive beam forming signal processing is applied to signal returns and arrivals to remove distortions by targeting velocity contrasts. Shear-wave dispersion, such as due to viscosity and mass changes in the tissue, are then estimated and compared to reference data to determine tissue health.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: November 17, 2020
    Assignee: Massachusetts Institute of Technology
    Inventor: Robert W. Haupt
  • Patent number: 10818073
    Abstract: A system and method are provided for generating time resolved series of angiographic volume data having flow information integrated therewith. The method includes generating a series of 3D time-resolved vascular volumes from time resolved x-ray projection data and calculating blood velocity in the vascular volumes x-ray projection data to determine a rate of change of calculated contrast material arrival time at positions along the vascular volumes. The method also includes displaying the 3D time-resolved vascular volumes with a graphical indication of blood velocity in the vascular volumes.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: October 27, 2020
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Charles A. Mistretta, Charles M. Strother
  • Patent number: 10813698
    Abstract: Methods, system, and media for identifying one or more ablation locations in an atrial tissue region in an atrial fibrillation (AF) patient with atrial fibrosis are disclosed. Three-dimensional imaging data representing the atria of the patient may be received. A patient-specific model of the atria may be generated from the three-dimensional imaging data. Simulation of the AF on the patient-specific model may be conducted to identify AF-perpetrating regions. One or more ablation locations in the atria may be identified from the AF-perpetrating regions.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: October 27, 2020
    Assignee: The Johns Hopkins University
    Inventors: Natalia A. Trayanova, Kathleen McDowell
  • Patent number: 10806419
    Abstract: According to one embodiment, an X-ray CT apparatus includes a calculator, a transmitter, a data acquisition unit, and a processor. The calculator calculates a difference between imaging time phases of a first contrast agent and a second contrast agent. The transmitter sends information on the difference between the imaging time phases to an injector. The injector injects the first contrast agent and the second contrast agent into the subject at different timings based on the information. The data acquisition unit scans a subject with X-rays at a predetermined imaging timing to acquire detection data corresponding to different X-ray energies. The processor analyzes the detection data acquired at the predetermined imaging timing to generate a plurality of images corresponding to the imaging time phases.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: October 20, 2020
    Assignee: Canon Medical Systems Corporation
    Inventors: Masaharu Tsuyuki, Tatsuo Maeda
  • Patent number: 10806952
    Abstract: An apparatus and as method for generating ultrasound. The apparatus comprises: a signal generator arranged to generate a driving signal; and an ultrasound transducer arranged to transmit an ultrasound beam in response to the driving signal received from the signal generator. The signal generator is arranged to combine a carrier wave and a modulating wave having a lower frequency than the carrier wave to generate an amplitude modulated driving signal. The ultrasound beam is suitable for inducing cavitation in a human or animal body tissue.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 20, 2020
    Assignee: King Fahad Medical City (KFMC)
    Inventor: Fares Al Mayiah
  • Patent number: 10806429
    Abstract: An ultrasonic imaging apparatus includes an ultrasonic probe and a delay amount calculation unit. Each of the delay circuits is configured to allow a first delay amount and a second delay amount to be set for each of the delay circuits, and delays a signal by a delay amount obtained by adding the first delay amount and the second delay amount together. The delay amount calculation unit calculates the first delay amount and the second delay amount such that a sum of the first delay amount and the second delay amount set for each of the delay circuits is equal to or less than a predefined maximum delay amount.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: October 20, 2020
    Assignee: Hitachi, Ltd.
    Inventor: Shinta Takano
  • Patent number: 10806430
    Abstract: A probe transmission device comprises a drive shaft which is provided with a radial hole and an axial hole, wherein the radial hole is in communication with the axial hole. A rope extends into the axial hole via the radial hole. A fixing component is arranged within the axial hole and fixes the rope within the radial hole. The probe transmission device is provided with the radial hole and the axial hole on the drive shaft. The rope extends into the radial hole and is fixed via the fixing component which is arranged with the axial hole. The structure of the present probe transmission is simple. The surface of the drive shaft does not require a component for fixing the rope, and the surface of the drive shaft is smooth. Interference produced by the rope and components on the surface of the drive shaft is avoided.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 20, 2020
    Assignee: SHENZHEN MINDRAY BIO-MEDICAL ELECTRONICS CO., LTD.
    Inventors: Ming Tang, Zhenyu Chen, Leyun Bai