Abstract: A mining machine includes: a road gradient calculator that calculates a road gradient of a travel route based on a position and a speed measured by a GNSS receiver, a vehicle body posture measured by a vehicle body posture sensor, and an acceleration measured by an acceleration sensor; a traction coefficient calculator that calculates a traction coefficient based on the speed measured by the GNSS receiver, the acceleration measured by the acceleration sensor, a wheel speed measured by a wheel speed sensor, a steering direction measured by a steering angle sensor, a vehicle weight measured by a load sensor, and a driving torque measured by a driving torque sensor; and a target torque calculator that calculates a target torque based on the road gradient calculated by the road gradient calculator and the traction coefficient calculated by the traction coefficient calculator.
Type:
Grant
Filed:
May 21, 2021
Date of Patent:
July 22, 2025
Assignee:
HITACHI CONSTRUCTION MACHINERY CO., LTD.
Abstract: A heavy goods vehicle includes a displacement calculator that calculates a displacement by multiplying an arc length per unit rotation angle of the outer circumference of a specified tire by the first physical quantity, a vehicle position estimator that estimates a vehicle position using the displacement, and a memory that stores a correlation between a second physical quantity corresponding to a loading weight and an arc length per predetermined rotation angle at the outer circumference of the specified tire. The displacement calculator refers to the correlation to calculate a current arc length per unit rotation angle at the outer circumference of the specified tire from the second physical quantity corresponding to the loading weight, and calculates the displacement by multiplying the first physical quantity detected by the rotation amount detector by the current arc length per unit rotation angle.
Abstract: Techniques for determining a parking trajectory for a vehicle are discussed herein. A parking management component may determine or receive a three-dimensional grid (“grid”), discretized based at least in part on a heading offset, a lateral offset, and/or a longitudinal offset between a first and second pose. A cell of the grid may include a cost associated indicating a minimum difference to the second pose when moving from the first as may be limited based on kinematic and/or dynamic constraints. When driving, a vehicle may determine a relative state of the vehicle to a desired location, use the relative state to access a cost from the grid, and determine whether to follow a trajectory based on the cost.