Abstract: A method for treating cardiac disease includes accessing a heart and restricting a blood supply to the heart to reduce a size of the heart. A constraining device is placed on the heart. The constraining device is secured to the heart with the constraining device having portions disposed on opposite sides of the heart to constrain circumferential expansion of the heart during diastole and permit unimpeded contraction of the heart during systole. Access to the heart is closed while leaving the constraining device in place on the heart.
Type:
Grant
Filed:
November 18, 1998
Date of Patent:
May 15, 2001
Assignee:
Acorn Cardiovascular, Inc.
Inventors:
Clifton A. Alferness, Donald F. Palme, James Edward Shapland
Abstract: The present invention provides a method of transplanting hematopoietic system reconstituting cells from a donor into an allogeneic recipient comprising administering to the recipient, prior to the administration of the hematopoietic system reconstituting cells, an amount of mononuclear cells which are treated so as to render them incapable of proliferating and causing a lethal graft versus host disease effect, but which are effective in enhancing subsequent engraftment of the hematopoietic system reconstituting cells in the recipient; and administering to the recipient an effective amount of hematopoietic system reconstituting cells.
Abstract: A minimally invasive approach for surgery on portions of the heart and great vessels located between a point approximately three centimeters above supra annular ridge and the mid ventricular cavity. A parasternal incision is made extending across a predetermined number of costal cartilage, e.g., a right parasternal incision extending from the lower edge of the second costal cartilage to the superior edge of the fifth costal cartilage. One or more costal cartilages, e.g., the third and fourth, are then excised to provide access to the portion of the heart or great vessels of interest, and a desired procedure completed. The minimally invasive approach enables repair or replacement of the mitral or aortic valve.
Abstract: An accelerated method of orthokeratology includes the steps of softening of the cornea with a softening agent, applying a mold to reshape the cornea to a desired anterior curvature, and rapidly restabilizing or "fixing" the corneal tissues so that the cornea retains its new configuration. A chemical softening agent, such as glutaric anhydride is applied to the cornea to soften the cornea, after which a specially designed mold of predetermined curvature and configuration is applied to the cornea. Slight downward pressure is applied to the mold for a predetermined period of time to re-shape the cornea. The mold is maintained in position while a stabilizing agent, such as a UV light source, is positioned above the mold. The stabilizing agent, i.e. UV light, is applied to the cornea for a predetermined time, wherein the stabilizing agent immediately restabilizes the corneal tissue so that the cornea immediately retains its shape upon removal of the mold.
Abstract: A system allows treatment of sublayers of tissue lying beneath an outer layer of tissue. The system includes an energy emitter able to heat predetermined areas of the tissue sublayers. The energy for heating typically is generated by a laser or lamp able to produce electromagnetic radiation in the infrared region to thereby cause tissue at the predetermined areas to heat and shrink. The shrinkage causes the shape of the outer layer or surface to change in a controlled manner that corrects the problematic surface formation, e.g., refractive error. An energy absorption modifier is used to avoid damage to the outer layer of tissue as energy is passed therethrough.