Patents Examined by Kemaya Nguyen
  • Patent number: 11982612
    Abstract: Systems and methods for flow cytometry. The methods comprise: labeling cells of a sample with Raman tags; causing the sample to flow through a microfluidic channel of a flow cytometer through which a laser beam passes; detecting Raman signals emitted from the Raman tags while being illuminated by the laser beam; and determining characteristics of the cells based on the detected Raman signals.
    Type: Grant
    Filed: April 19, 2022
    Date of Patent: May 14, 2024
    Assignee: BaySpec, Inc.
    Inventors: Kotaro Hiramatsu, Ryo Nishiyama, Keisuke Goda, Kosuke Dodo, Shintaro Kawamura, Mikiko Sodeoka, Hideyusi Suzuki, Charlie Zhang, William Yang Terziyan
  • Patent number: 11971296
    Abstract: A measurement method of receiving an emission light output from an optical semiconductor element on an incident end surface of an optical probe, shifts a relative position between the optical semiconductor element and the optical probe on a plane surface intersecting with an optical axis of the emission light, measures an incident intensity of the emission light at several positions, and obtains an incident intensity pattern showing a relationship between a change in the relative position and the respective incident intensities.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: April 30, 2024
    Assignee: Kabushiki Kaisha Nihon Micronics
    Inventors: Michitaka Okuta, Yuki Saito, Hisao Narita, Shou Harako, Jukiya Fukushi, Tomokazu Saito, Toshinaga Takeya
  • Patent number: 11965970
    Abstract: A light receiving element and a ranging system is provided which achieve improvement of pixel characteristics while allowing variation in a breakdown voltage of an SPAD. The light receiving element includes a pixel array in which a plurality of pixels is arranged in a matrix, and a pixel driving unit configured to control respective pixels of the pixel array to be active pixels or non-active pixels. The pixel includes an SPAD, a transistor connected to the SPAD in series, an inverter configured to output a detection signal indicating incidence of a photon on the SPAD, a first transistor which is switched on or off in accordance with control of the pixels to be the active pixels or the non-active pixels, and a second transistor connected to the first transistor in series.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: April 23, 2024
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Tatsuki Nishino
  • Patent number: 11959802
    Abstract: A spectrometer device includes an optical interference filter which is designed to filter specific wavelength ranges of an incident light beam on passage through the optical interference filter. The spectrometer device also includes a detector device which is designed to detect the filtered light beam. Further, the spectrometer device includes a focusing device with a reflective surface. The focusing device is designed to focus the filtered light beam onto the detector device by reflection on the surface.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: April 16, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Ralf Noltemeyer, Martin Husnik, Eugen Baumgart, Marc Schmid, Reinhold Roedel, Benedikt Stein, Christoph Schelling, Christoph Daniel Kraemmer
  • Patent number: 11953431
    Abstract: Devices and methods for measuring color of a target coating are provided. In an exemplary embodiment, a color measurement device includes a housing configured for placement on a target coating. A source connected to the housing directs a beam of electromagnetic radiation towards the target coating at an entrance angle. A spherical coordinate system is used, where the entrance angle is a polar angle measured from a zenith that is normal to the target coating surface. First and second detectors are connected to the housing at a first and second polar angle, respectively, to measure the electromagnetic radiation reflected by a target population of flakes within the target coating, where all the flakes in the target population of flakes have the same angled flake normal polar angle. The first polar angle is different than the second polar angle.
    Type: Grant
    Filed: December 13, 2021
    Date of Patent: April 9, 2024
    Assignee: AXALTA COATING SYSTEMS IP CO., LLC
    Inventor: Larry E. Steenhoek
  • Patent number: 11946805
    Abstract: A spectrometer apparatus is disclosed that includes at least one light source for irradiating a sample with light, an optical detection device for detecting light scattered by the sample, at least one optical filter device, which is arranged in front of and/or behind the sample, a contact sensor device for determining a contact between the sample and the spectrometer apparatus and for outputting a corresponding output signal, a control device for controlling the light source and the detection device in response to the output signal. The control device is designed such that the control device modifies at least one operating parameter of the light source and the detection device, when the output signal indicates the contact between the sample and the spectrometer apparatus. A method for operating a spectrometer apparatus is disclosed as well.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: April 2, 2024
    Assignee: Robert Bosch GmbH
    Inventors: Thomas Buck, Martin Husnik, Christian Huber, Marc Schmid, Benedikt Stein, Christoph Daniel Kraemmer
  • Patent number: 11927483
    Abstract: A Fourier spectrophotometer includes: a light source; an interferometer configured to obtain first and second interferograms whose intensity distributions are inverted from each other from the light emitted from light source; a multiplexing optical system configured to multiplex the first and second interferograms to irradiate the sample with a resultant interferogram; a demultiplexing optical system configured to demultiplex the first and second interferograms contained in the light passing through the sample; a light receiver configured to output a first light reception signal obtained by receiving the demultiplexed first interferogram and a second light reception signal obtained by receiving the demultiplexed second interferogram; and a signal processing device configured to perform processing for obtaining a noise-removed spectrum of the wavelength component in the analysis wavelength band by using the first and second light reception signals.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: March 12, 2024
    Assignee: Yokogawa Electric Corporation
    Inventors: Yasuyuki Suzuki, Yukihiro Nakamura, Tetsushi Namatame
  • Patent number: 11913834
    Abstract: An optical measurement probe for capturing a spectral response through an intervening material emitting unwanted background radiation includes: a first lens configured to receive light and collimate the light into a collimated excitation beam defining a first aperture; an objective element for focusing the collimated excitation beam to a point or region in a sample through the intervening material, wherein the objective element also receives light scattered by the sample and the intervening material and collimates the scattered light into a collimated collection beam defining a second aperture; and a blocking element within the collimated collection beam for removing the light scattered by the intervening material from the collimated collection beam received from the sample, wherein the second aperture defined by the collimated collection beam is at least two times greater than the first aperture defined by the collimated excitation beam.
    Type: Grant
    Filed: August 16, 2021
    Date of Patent: February 27, 2024
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: James M. Tedesco, Sean J. Gilliam
  • Patent number: 11898958
    Abstract: A spot on a layer of a 2D semiconductor material deposited on a substrate is irradiated so as to generate excitons, so that photons are emitted from the layer. The photoluminescence spectrum is recorded for different values of the charge carrier concentration in the layer. The modulation of the charge carrier concentration may be realized by modulating the output power of the light source used to irradiate the sample. The relation is recorded between the ratio of the photoluminescence intensity of a first peak in the spectrum related to radiative recombination from indirect bandgaps to the intensity of a second peak in the spectrum related to radiative recombination from direct bandgaps, and the carrier concentration. This relation is fitted to a model of the ratio that takes into account multiple recombination mechanisms, radiative and non-radiative. From this process, the trap density within the bandgap is derived.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: February 13, 2024
    Assignees: IMEC VZW, Katholieke Universitiet
    Inventors: Alessandra Leonhardt, Cesar Javier Lockhart De La Rosa, Stefan De Gendt, Cedric Huyghebaert, Steven Brems, Thomas Nuytten
  • Patent number: 11891261
    Abstract: A device for detecting the flatness of a sheet material includes a conveyor, a gantry, a beam, an industrial camera unit, a speed measurement unit, a vibration measurement unit, a multi-line laser, a cable carrier, an industrial controller, and a control cabinet. The conveyor is disposed beneath the gantry and includes a plurality of pinch roll assemblies for feeding a sheet material. The beam is disposed on the gantry and includes a first side and a second side. The industrial camera unit is disposed on the first side of the beam and includes at least two industrial cameras. The speed measurement unit is disposed between the at least two industrial cameras. The vibration measurement unit is disposed on the second side of the beam and includes at least two distance measurement devices. The multi-line laser is disposed between the at least two distance measurement devices.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: February 6, 2024
    Assignee: TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Lifeng Ma, Ziliang Li, Qingxue Huang, Tao Wang, Dahai Jing, Rongjun Wang, Lianyun Jiang
  • Patent number: 11874230
    Abstract: A method for determining an amount of a Raman-invisible gas in a multi-component gas stream includes performing a first and second absolute Raman analysis on the gas stream. A decrease in the absolute Raman bands from the first analysis to the second analysis is attributed to an increase of the Raman-invisible gas in the gas stream. The amount of the Raman-invisible gas is calculated from the difference between the first and second sets of Raman bands. The calculation of the Raman-invisible gas is verified via a measurement and a calculation of a secondary property of the gas stream such as the thermal conductivity of the gas stream or the density of the gas stream.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: January 16, 2024
    Assignee: Endress+Hauser Optical Analysis, Inc.
    Inventors: Joseph B. Slater, Marc Winter, Oliver Link
  • Patent number: 11860109
    Abstract: Various embodiments relate to an optical detection element and GOI (Ge-on-insulator) device for ultra-small on-chip optical sensing, and a manufacturing method of the same. According to various embodiments, the optical detection element and the GOI device may be implemented on a GOI structure comprising a germanium (Ge) layer, and the GOI device may be implemented to have an optical detection element. Specifically, the GOI device may include a GOI structure with a waveguide region comprising a germanium layer, a light source element configured to generate light for the waveguide region, and at least one optical detection element configured to detect light coming from the waveguide region. At least one slot configured to collect light from the light source element may be formed in the germanium layer in the waveguide region. The light source element may generate light so as to be coupled to the germanium layer in the waveguide region.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: January 2, 2024
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Sanghyeon Kim, Jinha Lim, Joonsup Shim
  • Patent number: 11860335
    Abstract: A laser source apparatus is for providing a beam path to generate a first laser beam and a second laser beam. The laser source apparatus includes a laser generator, at least one spectrum broadening unit and a beam splitter on the beam path. The laser generator is configured to generate an original laser beam with a pulse duration smaller than 1 ps. The spectrum broadening unit is configured in a following stage of the laser generator. The spectrum broadening unit includes a multiple plate continuum. The multiple plate continuum includes a plurality of thin plates, and the thin plates are configured along the beam path in order. The beam splitter is configured in the following stage of the laser generator to divide the original laser beam into the first laser beam and the second laser beam.
    Type: Grant
    Filed: February 21, 2021
    Date of Patent: January 2, 2024
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Shang-Da Yang, Chih-Hsuan Lu, Jhan-Yu Guo, Chao-Yang Lin
  • Patent number: 11841331
    Abstract: A measuring and calculating apparatus to measure and calculate a positional displacement amount of a pattern on a surface of a target object. The apparatus includes: a measuring unit to measure a first two-dimensional intensity distribution of a first diffracted light and a second two-dimensional intensity distribution of a second diffracted light; a storage unit to store a first and a second measurement data respectively indicating the first and the second two-dimensional intensity distribution; and an arithmetic unit to execute arithmetic processing using the first and the second measurement data to acquire difference data between the first and the second measurement data, and calculate a positional displacement amount of a difference pattern between the first and second patterns in accordance with the difference data.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: December 12, 2023
    Assignee: Kioxia Corporation
    Inventor: Kentaro Kasa
  • Patent number: 11808630
    Abstract: A first optical system (10) according to the present disclosure includes a first lens (111) that guides light (LO) to a diffraction grating (3), a second lens (112) that collimates first diffracted light (L1) that was focused at a first focal point (f1), a pair of first mirrors (12, 13), a third lens (113) that focuses the first diffracted light (L1) at a second focal point (f2), and a fourth lens (114) that guides the first diffracted light (L1) that was focused by the third lens (113) to the diffraction grating (3). The first lens (111) and the fourth lens (114) have a substantially identical first focal length. The second lens (112) and the third lens (113) have a substantially identical second focal length. A first distance along an optical path from the first focal point (f1) to the second focal point (f2) is determined by a first predetermined condition.
    Type: Grant
    Filed: July 14, 2022
    Date of Patent: November 7, 2023
    Assignees: Yokogawa Test & Measurement Corporation, Yokogawa Electric Corporation
    Inventors: Tsutomu Kaneko, Manabu Kojima
  • Patent number: 11808658
    Abstract: Various implementations of visual inspector attachments for fiber connector cleaners are disclosed. The example fiber optic inspection module includes a camera to capture an image of an end-face, a light source to illuminate the end-face, and a first mirror that reflects light from the light source to the end-face and includes a fixed point that allows the first mirror to pivot. Alternatively, an example fiber optic inspection module includes a camera to capture an image of an end-face, a light source to illuminate the end-face, and a first mirror that reflects light from the light source to the end-face and the first mirror moves in an upward direction.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 7, 2023
    Assignee: Panduit Corp.
    Inventors: Yu Huang, Jose M. Castro, Surendra Chitti Babu, Andrew R. Matcha, Thomas M. Sedor
  • Patent number: 11796391
    Abstract: A light detection device includes: a first support part disposed on a mounting surface of the wiring board; a Fabry-Perot interference filter disposed in a first support region of the first support part; and a temperature detector, wherein the temperature detector is disposed on the mounting surface such that at least a part of the temperature detector overlaps a part of the Fabry-Perot interference filter when seen in a first direction perpendicular to the mounting surface and such that at least a part of the temperature detector overlaps a part of the first support part when seen in a second direction in which the first support part and the light detector are aligned with each other, and wherein a first distance between the temperature detector and the first support part in the second direction is smaller than a first width of the first support region in the second direction.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: October 24, 2023
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takashi Kasahara, Katsumi Shibayama, Kei Tabata, Masaki Hirose, Hiroki Oyama, Yumi Kuramoto
  • Patent number: 11747204
    Abstract: A system includes first and second radiation sources, first and second detectors, a signal digitizer, a controller, and an analyzer. The first and second radiation sources generate respective first and second beams of radiation to irradiate a target. The first beam and second beams each include a first wavelength operated at a first modulation frequency and a second wavelength operated at a second modulation frequency. The first and second detectors each include a photo-sensitive element that generate first or second detection signals, a Faraday shielding enclosure, a signal amplifier, and a frequency mixer to frequency-adjust the first or second detection signals. The controller provides timing information to inform an activation scheme of the first and second radiation sources and corresponding radiation detection events at the first and second detectors. The analyzer analyzes the first and second detection signals and determines at least amplitude and phase information of the scattered radiation.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: September 5, 2023
    Assignee: The Johns Hopkins University
    Inventors: Scott M. Hendrickson, Jeremiah J. Wathen, Michael J. Fitch, David W. Blodgett, Vincent R. Pagan
  • Patent number: 11740129
    Abstract: A differential interference imaging system capable of rapidly changing shear direction and amount includes: a light source (101), a filter (102), a polarizer (103), a sample stage (104), an infinite imaging microobjective (105), a tube lens (106), a shear component, an analyzer (113), and an image sensor (114). After the light intensity and a polarization direction is adjusted, the linearly polarized light passes through a transparent sample, to be collected by the infinite imaging microobjective (105) and to implement imaging through the tube lens (106). An imaging beam is divided into two linearly polarized light fields which are perpendicular to each other in the polarization directions and have tiny shear amount, then they are further combined into an interference light filed by the analyzer (103) to form a differential interference image in the image sensor (114). The system may be flexibly assembled, is simple in structure and easy to implement.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: August 29, 2023
    Assignee: SOUTH CHINA NORMAL UNIVERSITY
    Inventors: Xiaoxu Lv, Chengxin Zhou, Liyun Zhong, Qinwen Ning, Shengde Liu
  • Patent number: 11733098
    Abstract: A silicon Fourier transform spectrometer and an optical spectrum reconstruction method are disclosed. The spectrometer includes a waveguide input coupler, cascaded optical switches, unbalanced subwavelength grating (SWG) waveguide pairs, and a germanium silicon detector, where the cascaded optical switches are connected through unbalanced SWG waveguide pairs. The state of the optical switches are adjusted to digitally configure the optical path, so as to constitute a series of unbalanced Mach-Zehnder interferometer (MZI) arrays with different optical path differences, to realize a Fourier transform spectrometer based on spatial heterodyne. The optical spectrum is reconstructed by using a compressed sensing algorithm.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: August 22, 2023
    Assignee: Shanghai Jiao Tong University
    Inventors: Liangjun Lu, Junjie Du, Linjie Zhou, Jianping Chen, Jiao Liu