Patents Examined by Ken N Vanderpuye
  • Patent number: 10014942
    Abstract: A fiber optic tap system includes a first receiver module having an input port configured to receive an optical fiber. The first receiver module is operable to convert a received optical signal to an electrical signal. A first transmitter module is coupled to receive the electrical signal from the first receiver module and convert the received electrical signal to an optical signal. The first transmitter module has an output port for outputting the optical signal. A first tap module is coupled to receive the electrical signal from the first receiver module.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: July 3, 2018
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Joseph C. Coffey, Paul John Pepe
  • Patent number: 10009136
    Abstract: Methods, systems, and apparatus, for an external cavity FP laser. In one aspect, an apparatus is provided that includes a FP laser diode; a Faraday rotator (FR) coupled to receive an optical output of the FP laser diode and that rotates a polarization of the optical output; an optical fiber coupled at a first end to receive the output of the FR; a WDM filter coupled to a second end of the optical fiber to receive the optical signal from the optical fiber; and a FRM coupled directly or indirectly to an output of the WDM filter, wherein an optical output of the WDM filter is partially reflected by the FRM such that the polarization of a reflected beam is rotated, and wherein the reflected optical signal then passes through the FR with its polarization being rotated by the FR before it is injected back into the FP laser diode.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: June 26, 2018
    Assignee: Oplink Communications, LLC
    Inventors: Zuon-Min Chuang, Rang-Chen Yu, Domenico DiMola, Sung-Ping Huang
  • Patent number: 10009112
    Abstract: A method of reducing electromagnetic interference in a multi-channel transmitter is described. The method may include receiving multiple signals configured to be transmitted through multiple channels. The method may additionally include adjusting delays of the multiple signals to generate multiple delayed signals. Each two adjacent delayed signals may be configured to have a corresponding phase difference that satisfies a phase delay requirement. The method may additionally include generating multiple load signals from the multiple delayed signals.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: June 26, 2018
    Assignee: FINISAR CORPORATION
    Inventor: Yongshan Zhang
  • Patent number: 10009107
    Abstract: A system includes an optical transceiver configured to transmit/receive at least one optical feed and a beam separator configured to separate the optical feed into a plurality of optical beams, and spatially combine the optical beams into the optical beam. The system also includes a dichroic mirror optically coupled to the beam separator and configured to reflect the optical beams, and allow beacon signals to pass therethrough. A position sensitive detector of the system optically couples to the dichroic mirror and is configured to sense an incidence position of each beacon signal allowed to pass through the dichroic mirror, and output a position error for each optical beam based on the sensed incidence positions. The system also includes a multi-axis optical steering system configured to direct each optical beam based on the corresponding position error outputted from the position sensitive detector and a corresponding transmit/receive target.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: June 26, 2018
    Assignee: X Development LLC
    Inventors: Ben Warren Segura, Walid Mathlouthi
  • Patent number: 10009101
    Abstract: Systems, methods, and apparatus for laser communications following an atmospheric event. In one or more embodiments, the disclosed method involves transmitting, by at least one laser on at least one first satellite, at least one first transmit signal. The method further involves receiving, by at least one detector on at least one first satellite, at least one first receive signal. In one or more embodiments, at least one first satellite is in super-geosynchronous earth orbit (S-GEO). In at least one embodiment, at least one first transmit signal and at least one first receive signal are laser signals. Further, the method involves adapting, by at least one first processor on at least one first satellite, at least one first transmit signal according to at least one atmospheric event.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: June 26, 2018
    Assignee: The Boeing Company
    Inventors: Matthew M. Everett, John P. Leuer, David A. Whelan, Stephen G. Lambert
  • Patent number: 10009096
    Abstract: A method, apparatus and system for estimating frequency offset that includes: a first calculating unit to calculate a correlation value of each of multiple sequences with different lengths according to a received signal containing the sequences with different lengths, where each of the sequences is repeatedly transmitted many times in the signal; a second calculating unit to calculate a decimal frequency according to the correlation value; a first determining unit to determine an integer frequency offset according to the decimal frequency offset to which each of the sequences corresponds; and a second determining unit to determine a total frequency offset according to the decimal frequency offset and the integer frequency offset.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: June 26, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Meng Yan, Yinwen Cao, Zhenning Tao
  • Patent number: 10009671
    Abstract: Method and apparatus of an optical routing system (“ORS”) capable of automatically discovering intra-nodal fiber connections using a test channel transceiver (“TCT”) are disclosed. ORS, in one embodiment, includes a set of reconfigurable optical add-drop multiplexer (“ROADM”) modules, intra-nodal fiber connections, add-drop modules, and a test module. The ROADM modules are able to transmit or receive optical signals via optical fibers. The intra-nodal fiber connections are configured to provide optical connections. The add-drop modules are able to selectively make connections between input ports and output ports. The test module containing TCT is configured to identify at least a portion of intra-nodal connections of the ROADM via a test signal operating with a unique optical frequency.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: June 26, 2018
    Assignee: Tellabs Operations, Inc.
    Inventors: Richard Y. Younce, Yajun Wang, Julia Y. Larikova, Rafid Sukkar
  • Patent number: 10003133
    Abstract: The present invention discloses a system for full-duplex data transmission using polarization multiplexing comprises a central station having a first means for processing downlink signals and a second means for processing uplink signals, and a remote antenna unit connected to the central station via a transmission medium, having a third means for processing downlink signals and a fourth means for processing uplink signals, characterised in that the remote antenna unit is configured to receive downlink signals from the central station, and then to split a portion of the downlink signals to be used as uplink data transmission simultaneously with transmission of the downlink.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 19, 2018
    Assignee: Telekom Malaysia Berhad
    Inventors: Thavamaran Kanesan, Farha Binti Maskuriy, Mohd Azmi Bin Ismail, Mohd Hafiz Bin Mohamad Nor, Hizamel Bin Mohd Hizan, Romli Bin Mohamad, Sufian Mousa Ibrahim Mitani
  • Patent number: 10003429
    Abstract: An optical transmission device includes: a wavelength allocation detector configured to detect wavelength allocation that indicates allocation of optical signals multiplexed in a WDM optical signal; a power adjusting unit configured to adjust powers of the optical signals multiplexed in the WDM optical signal; an optical amplifier configured to amplify the WDM optical signal output from the power adjusting unit; a power controller configured to generate a power control signal to control the power adjusting unit such that the WDM optical signal has a specified wavelength characteristic; and a correction value generator configured to generate a correction value to correct the power control signal based on the wavelength allocation. The power controller corrects the power control signal with the correction value. The power adjusting unit adjusts powers of the optical signals multiplexed in the WDM optical signal according to the corrected power control signal.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: June 19, 2018
    Assignee: FUJITSU LIMITED
    Inventor: Tatsuya Tsuzuki
  • Patent number: 10003423
    Abstract: An optical transmitter transmits an orthogonal frequency division multiplexing symbol in which only one-half of available subcarriers are modulated with data and the remaining subcarriers are suppressed by not modulating with data. The transmission is of duration equal to half the symbol period of the OFDM symbol, resulting in a half-cycle transmission. An optical receiver receives the half-cycle transmission OFDM symbol, regenerates the full time domain representation and recovers data modulated on the one-half of available subcarriers. The modulated subcarriers and the suppressed subcarriers alternate in the frequency domain.
    Type: Grant
    Filed: May 15, 2014
    Date of Patent: June 19, 2018
    Assignee: ZTE (USA) Inc.
    Inventors: Jianjun Yu, Fan Li
  • Patent number: 10003428
    Abstract: A method of Noisy Window and associated management messages to support set splitting if activating ONUs with uncalibrated transmitter, offering a power grant for unmodulated upstream transmission, measuring the average received optical power in all upstream wavelength channels and providing downstream indication of the upstream wavelength channel with abnormally high average received power.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: June 19, 2018
    Assignees: ZTE Corporation, ZTE (USA) Inc.
    Inventors: Denis Andreyevich Khotimsky, SongLin Zhu, DeZhi Zhang
  • Patent number: 10002528
    Abstract: A method for operating an electronic device is provided. The method includes converting received infrared into an electrical signal, amplifying the electrical signal and outputting an analog signal, converting the analog signal into digital data, determining whether the digital data is valid, and activating an application program in a freeze state to be in an unfreeze state.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: June 19, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Woo-Sung Chun
  • Patent number: 10003403
    Abstract: Systems and methods can operate to detect and avoid optical beat interference (OBI) in broadband devices by use of restrictive channel assignment. An OBI-mitigating mapper algorithm can leash OBI candidates in a circular queue to avoid scheduling service flows likely to result in OBI generation. In some implementations, the algorithm can automatically leash all pre-DOCSIS 3.0 service flows. In alternative implementations, the algorithm can allow the CMTS to normally load balance pre-DOCSIS 3.0 devices while manually adding and/or removing pre-DOCSIS 3.0 service flows from the OBI candidate queue based upon lost transmissions or a designated age-out timer.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: June 19, 2018
    Assignee: ARRIS Enterprises LLC
    Inventors: Thomas J. Cloonan, Greg Gohman
  • Patent number: 10003406
    Abstract: An optical level control apparatus includes an input port, an output port, an optical device to assume a state of outputting light inputted to the input port from the output port and a state of not outputting the light inputted to the input port from the output port; a detector to detect an intensity of the light inputted to the input port, and a control unit to detect an input of an optical burst signal to the input port on the basis of a result of detecting the intensity of the light and to control the optical device so that the signal, in which to eliminate a field extending up to an elapse of a period of first time equal to or shorter than laser ON time period of the signal from a head of the signal with its input being detected, is output from the output port.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 19, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Setsuo Yoshida, Keisuke Harada
  • Patent number: 9997066
    Abstract: In an optical fiber network for transmitting optical signals in a robot having three or more joints connecting a plurality of links in series such that the links include two end links located at either end and intermediate links provided between the two end links, and the links connected by the joints are moveable relative to each other, a plurality of optical transceiver modules are provided on the links such that at least one optical transceiver module is provided on each link; and a plurality of optical fiber cables connect the optical transceiver modules in a ring; wherein at least one end of each optical fiber cable connecting the optical transceiver modules provided on different links is connected to one of the optical transceiver modules provided on the intermediate links.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: June 12, 2018
    Assignee: Honda Motor Co., Ltd.
    Inventors: Ryusuke Ishizaki, Shingo Iwasaki
  • Patent number: 9998225
    Abstract: An optical transceiver for use in network device in a packet network is provided. The network device may not be capable of providing a ring topology without use of the apparatus. The network device is configured to support at least two optical interfaces and an electrical interface, and coupled to an optical link. The optical transceiver includes a memory, a processor coupled to the memory, and a scheduler coupled to the processor. The scheduler of the optical transceiver is configured to perform as an information base for forwarding and transferring of packets and to use an optical link as a packet buffer.
    Type: Grant
    Filed: August 6, 2016
    Date of Patent: June 12, 2018
    Assignee: OE SOLUTIONS CO., LTD.
    Inventor: Gwangyong Yi
  • Patent number: 9995890
    Abstract: Thermal management of a locker etalon in a transmitter optical subassembly (TOSA). In one example embodiment, a TOSA includes a case, a laser positioned within the case and electro-thermally connected to the case, a locker etalon positioned in the case and thermally connected to the case, and a thermoelectric cooler (TEC) positioned within the case and in thermal contact with both the laser and the locker etalon.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: June 12, 2018
    Assignee: FINISAR CORPORATION
    Inventors: Saeid Azemati, Farhang Sakhitab, Jamie Lars Silva
  • Patent number: 9998223
    Abstract: Embodiments of the present disclosure provide a calculating apparatus and method for nonlinear weighting coefficient. The calculating apparatus for nonlinear weighting coefficient includes: an approximation processing unit configured to use a rational function to perform approximation processing on a link loss/gain function in intra-channel nonlinear distortion estimation; and a coefficient calculating unit configured to calculate a nonlinear weighting coefficient in the nonlinear distortion estimation by using the approximated link loss/gain function and a large dispersion approximation, to obtain an analytical closed solution of the nonlinear weighting coefficient. With the embodiments of the present disclosure, a weighting coefficient of high precision may be obtained, thereby performing high-precision estimation on nonlinear distortion in case of loss.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: June 12, 2018
    Assignee: FUJITSU LIMITED
    Inventors: Ying Zhao, Liang Dou, Zhenning Tao
  • Patent number: 9991960
    Abstract: An apparatus comprises a polarization-diversity optical hybrid that converts an optical signal into a plurality of optical signals comprising a first polarization component and a second polarization component orthogonal to the first polarization component, one or more detectors that convert the plurality of optical signals into a plurality of first analog electrical signals, DC blocking elements that remove DC signal components to output a plurality of second analog electrical signals, analog to digital converters (ADCs) coupled to the DC blocking elements that convert the plurality of second analog electrical signals into a plurality of digital signals, and a digital signal processing (DSP) unit coupled to the ADCs. The DSP is configured to perform a fiber dispersion compensation on the plurality of digital signals and add DC offsets to output a plurality of DC-restored compensated digital signals.
    Type: Grant
    Filed: October 2, 2017
    Date of Patent: June 5, 2018
    Assignee: Futurewei Technologies, Inc.
    Inventors: Xiang Liu, Frank Effenberger
  • Patent number: 9991964
    Abstract: Embodiments described herein include a multichannel transmitter optical subassembly that includes a plurality of lasers and a signal combiner. The plurality of lasers may be configured to emit light each with a different one of a plurality of light signals, each of the plurality of light signals having a wavelength within one of a plurality of wavelength bands. The signal combiner may be disposed relative to the plurality of lasers to receive the plurality of light signals. The signal combiner may include at least one surface having an optical coating that reflects at least one of the light signals of the plurality of light signals and transmits at least one of the light signals of the plurality of light signals.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: June 5, 2018
    Assignee: FINISAR CORPORATION
    Inventors: Tengda Du, Xiaojie Xu