Patents Examined by Ken Vanderpuye
  • Patent number: 9002195
    Abstract: In an optical communication system containing a primary line and backup line card, a method includes providing interfaces for the primary and backup line card, each line card including a transmitter and receiver; and selecting output from the transmitter from either the primary or back up line card including selecting the backup line card when the primary line card encounters a failure.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: April 7, 2015
    Assignee: NEC Laboratories America, Inc.
    Inventors: Junqiang Hu, Philip Nan Ji, Ting Wang, Yoshiaki Aono
  • Patent number: 9002148
    Abstract: A fiber network is monitored in order to detect physical intrusion. The state of polarization of an optical fiber is monitored. A fiber tap is determined to have occurred if the state of polarization of the fiber changes beyond a predetermined amount found to be associated with all types of fiber taps. Alternately, it may be determined that a fiber tap has occurred if the state of polarization changes beyond a second predetermined amount and in a predetermined direction. Monitoring of the state of polarization occurs before and after a time period chosen to be less than a time during which the state of polarization of the optical fiber is expected to drift. This step eliminates false positives due to natural fiber PMD drift.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: April 7, 2015
    Assignee: RPX Clearing House LLC
    Inventor: Bruce Schofield
  • Patent number: 9002210
    Abstract: An equalizer (200) for equalization of a signal transmitted via an optical fiber link from a transmitter to a corresponding receiver employs a backpropagation model (300) which comprises one or more sequential segments collectively representing an inverse fiber link. Each sequential segment comprises a linear backpropagation element (304), and a non-linear backpropagation element (306) having an associated compensation bandwidth (312). The equalizer (200) generates a distortion-mitigated signal by computing, for each sequential segment in turn, a first linear compensated signal from a signal input to the segment in accordance with the linear backpropagation element (304), and a non-linear compensated signal from the first linear compensated signal in accordance with the non-linear backpropagation element (306).
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 7, 2015
    Assignee: Ofidium Pty. Ltd.
    Inventors: Arthur James Lowery, Liang Bangyuan Du
  • Patent number: 9002207
    Abstract: A compact photonic radio frequency front end receiver system including a laser chip source, radio frequency and LO inputs, an optical modulator chip coupled to the laser source and the radio frequency and LO inputs, a millimeter scale optical radio frequency multi-pole filter coupled to the optical modulator, an optical switch array chip coupled to the optical radio frequency multi-pole filter, and a detector chip coupled to the optical switch array, all with micro-optic coupling, heterodyne signal recovery, and wavelength locking.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: April 7, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas W. Karras, Stephen Robertson, Arthur C. Paolella, William J. Taft
  • Patent number: 8995836
    Abstract: A wavelength division multiplexing passive optical network (WPON) comprising an optical line terminal (OLT) and a plurality of optical network units (ONUs) coupled to the OLT via a power optical splitter. The OLT is configured to monitor wavelengths in use by the ONUs and to divide upstream traffic from the ONUs into multiple channels using tunable filters. Also disclosed is an OLT for a PON, the OLT comprising a plurality of receivers and a plurality of tunable filters corresponding to each of the receivers. The OLT also comprises channel control logic coupled to the tunable filters, wherein the channel control logic is configured to detect a plurality of wavelengths in use for upstream traffic in the PON and to divide the upstream traffic into multiple channels using the tunable filters. Included is a method for managing upstream traffic in a PON, the method comprising monitoring, by a processor, wavelengths in use for upstream traffic in the PON.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: March 31, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Ning Cheng, Frank J. Effenberger, Guo Wei
  • Patent number: 8995831
    Abstract: A method for processing optical signals includes performing frequency mixing, photoelectric detection, analog/digital conversion, and dispersion compensation on received input optical signals. First-path polarization multiplexing optical signals and second-path polarization multiplexing optical signals. An initialization update process is performed on filter coefficients. Polarization compensation is performed on the first-path polarization multiplexing optical signals and the second-path polarization multiplexing optical signals by using the filter coefficients on which the initialization update is performed to obtain initialized x-path optical signals and initialized y-path optical signals. Preset x-path training sequences and y-path training sequences are synchronized by using the initialized x-path optical signals and the initialized y-path optical signals. If a synchronization result indicates that polarization cross occurs, the polarization cross is rectified.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 31, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Liangchuan Li, Ling Liu
  • Patent number: 8989599
    Abstract: Since it is difficult to fast, simply monitor impairments of received signals with higher receiver sensitivity, a monitoring method for an optical communication system according to an exemplary aspect of the invention includes the steps of emitting lightwave signals to be modulated according to a data, forming dips at transitions between temporally consecutive groups of n symbols of the lightwave signals, wherein the dips are formed at each of (n?1) first transitions of the group, no dip is formed at the n-th transition on the lightwave signals, receiving the lightwave signals, extracting frequency components characterized by the numerical value n from received lightwave signals, and monitoring the received lightwave signals by using the frequency components.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: March 24, 2015
    Assignee: NEC Corporation
    Inventors: Emmanuel Le Taillandier De Gabory, Kiyoshi Fukuchi, Manabu Arikawa
  • Patent number: 8989580
    Abstract: The disclosure provides a long-distance box and a method for processing uplink light and downlink light of the long-distance box, uplink light and downlink light from different Passive Optical Network (PON) systems are split, the uplink light from the different PON systems is transmitted through a first optical path, and the downlink light from the different PON systems is transmitted through a second optical path; wherein the uplink light from the different PON systems is amplified by an Optical Amplifier (OA) and then output to Optical Line Terminals (OLT) of respective systems; the downlink light from different PON systems with the different wavelengths is transmitted through different optical sub-paths of the second optical path according to the wavelengths of the downlink light, and the downlink light is amplified by different Optical-Electrical-Optical (OEO) conversion devices on the different optical sub-paths and then output to Optical Network Units (ONUs) of the respective systems.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 24, 2015
    Assignee: ZTE Corporation
    Inventors: Jidong Xu, Dezhi Zhang
  • Patent number: 8989587
    Abstract: Methods, algorithms, architectures, circuits, and/or systems for determining the status of parameters associated with optical transceiver operation are disclosed. The method can include (a) accessing and/or monitoring parametric data for each of a plurality of parameters that are related to operation of the optical transceiver; (b) storing the parametric data in one or more memories; (c) comparing the parametric data for each of the plurality of parameters against at least one of a corresponding plurality of predetermined thresholds; and (d) generating one or more states indicating whether the parametric data for a unique one of the parameters has crossed one or more of the corresponding plurality of predetermined thresholds. The invention also relates to an optical triplexer, comprising the described optical transceiver.
    Type: Grant
    Filed: January 11, 2012
    Date of Patent: March 24, 2015
    Assignee: Source Photonics, Inc.
    Inventors: Todd Rope, Mark Heimbuch
  • Patent number: 8989574
    Abstract: A WDM signal light monitoring device includes a first monitor for monitoring input-side WDM main signal light and output-side WDM main signal light for each wavelength; and a second monitor for monitoring the first monitor by comparing a monitoring result received from an upstream WDM transmission device with a monitoring result of the first monitor, wherein the monitoring result of the first monitor is transmitted to a downstream WDM transmission device in the system.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: March 24, 2015
    Assignee: NEC Corporation
    Inventor: Baku Kikuchi
  • Patent number: 8989602
    Abstract: A digital coherent optical receiver includes a processor that is operative to separate electric signals obtained by converting an optical signal into a horizontal signal component and a vertical signal component; to generate a histogram of the horizontal signal component and the vertical signal component as outputs of the equalizing filter; and to determine a presence/absence of local convergence based on distribution of the histogram of the horizontal signal component and the histogram of the vertical signal component.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: March 24, 2015
    Assignee: Fujitsu Limited
    Inventors: Kosuke Komaki, Osamu Takeuchi
  • Patent number: 8983305
    Abstract: The present invention provides a method and an apparatus for controlling a phase delay offset point of a modulator. The method comprises: acquiring backlight detection current signals output from a modulator in different working states, and determining harmonic amplitude values of the backlight detection current signals corresponding to the different working states; determining a detection value of a phase delay offset point corresponding to the modulator according to the determined harmonic amplitude values; comparing the detection value with a set target value of the phase delay offset point, and controlling a position of the phase delay offset point corresponding to the modulator according to the comparison result. The accuracy of controlling the position of the phase delay offset point of the modulator and the performance of the Differential Quadrature Phase Shift Keying (DQPSK) modulation system are improved through the technical solution.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: March 17, 2015
    Assignee: ZTE Corporation
    Inventors: Hong Yi, Jianhong Chen
  • Patent number: 8983306
    Abstract: A WDM device having a controller that individually controls the operating parameters of tunable lasers and the temperatures of an optical multiplexer and etalon. The device employs a spectral analyzer to measure the spectral composition of the optical output signal produced by the device. Based on the analyses of the measured spectral composition, the controller sets the temperatures of the tunable lasers, optical multiplexer, and optical etalon to values that cause: (i) middle frequencies of transmission bands of the optical multiplexer to be spectrally aligned with the corresponding frequencies of the specified frequency grid, (ii) each laser line to be properly positioned within the corresponding transmission band, and (iii) transmission resonances of the optical etalon to be properly positioned with respect to the laser lines.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: March 17, 2015
    Assignee: Alcatel Lucent
    Inventors: Pietro A. G. Bernasconi, David T. Neilson
  • Patent number: 8983309
    Abstract: A transmitter in an optical communications system includes a digital signal processor for processing a data signal to generate a sample stream encoding successive symbols in accordance with a constrained phase modulation scheme having a constellation of at least two symbols and a modulation phase constrained to a phase range spanning less than 4?. A digital-to-analog converter converts the sample stream into a corresponding analog drive signal. A finite range phase modulator modulates a phase of a continuous wavelength channel light in accordance with the analog drive signal, to generate a modulated channel light for transmission through the optical communications system. A receiver in the optical communications system includes an optical stage for detecting phase and amplitude of the modulated channel light and for generating a corresponding sample stream, and a digital signal processor for processing the sample stream to estimate each successive symbol of the modulated channel light.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: March 17, 2015
    Assignee: Ciena Corporation
    Inventors: James Harley, Douglas McGhan, Shahab Oveis Gharan, Kim B. Roberts, Mark Rollins
  • Patent number: 8977131
    Abstract: An optical apparatus receives an upward signal light from a plurality of subscriber units, where the upward signal light is composed of a plurality of time slots corresponding to the plurality of optical subscriber units. The optical apparatus includes a driving unit configured to determine a respective required gain for light from each of the plurality of optical subscriber units, an amplifying section configured to amplify the upward signal light with the required gain corresponding to the time slots of the upward signal light, and a receiver configured to receive the amplified upward signal light.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: March 10, 2015
    Assignee: Fujitsu Limited
    Inventors: Setsuo Yoshida, Susumu Kinoshita
  • Patent number: 8977124
    Abstract: A system and method for optical switching of networks in a multi-node computing system with programmable magneto-optical switches that enable optical signal routing on optical pathways. The system includes a network of optical links interconnecting nodes with switching elements that are controlled by electrical control signals. Data transmission is along the optical links and an optical pathway is determined by the electrical control signals which are launched ahead of optical signal. If links are available, an optical pathway is reserved, and the electrical signal sets the necessary optical switches for the particular optical pathway. There is thereby eliminated the need for optical-electrical-optical conversion at each node in order to route data packets through the network. If a link or optical pathway is not available the system tries to find an alternative path. If no alternative path is available, the system reserves buffering. After transmission, all reservations are released.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: March 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Maurice McGlashan-Powell, Valentine Salapura
  • Patent number: 8977127
    Abstract: A system comprising a first optical line terminal (OLT) comprising a first integrated optical network unit (ONU), and a first OLT transceiver, and a second OLT coupled to the first OLT, wherein the second OLT comprises a second integrated ONU, and a second OLT transceiver. Included is a first OLT comprising an optical transceiver, at least one processor coupled to the optical transceiver, wherein the processor working in conjunction with the optical transceiver is configured to determine an upstream wavelength corresponding to a second OLT, join, via a first ONU in the first OLT, the second OLT using the upstream wavelength corresponding to the second OLT, and transmit data to the second OLT by the first OLT via the first ONU, wherein the second OLT comprises a second ONU.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 10, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Yuanqiu Luo, Bo Gao, Frank Effenberger
  • Patent number: 8977130
    Abstract: There is provided an optical transmission device, the optical transmission device including a wavelength selective switch configured to select a first optical signal having a first wavelength from an input signal of wavelength division multiplexing, an optical filter circuit configured to include an optical tunable filter having a pass wavelength that is tunable to a second wavelength of a second optical signal for passing therethrough, a splitter configured to split the input signal, a split signal split by the splitter being transferred to the optical filter circuit, and a coupler configured to couple the first optical signal selected by the wavelength selective switch and the second optical signal passed through the optical filter circuit.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: March 10, 2015
    Assignee: Fujitsu Limited
    Inventors: Koji Takeguchi, Kazuo Takatsu
  • Patent number: 8977137
    Abstract: An apparatus including a polarization controller is described. The polarizer controller is communicatively coupled via a feedback loop to an evaluation module located near an optical receiver. The evaluation module is configured to measure polarization dependent loss (PDL) of an optical signal received at the optical receiver. The polarization controller is configured to receive feedback control data regarding the PDL from the evaluation module. Additionally, the polarization controller is configured to modify a state of polarization of the optical signal at an optical transmitter, which is communicatively coupled to the optical receiver, based on the feedback control data.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: March 10, 2015
    Assignee: Fujitsu Limited
    Inventors: Olga Vassilieva, Inwoong Kim, Motoyoshi Sekiya
  • Patent number: 8977123
    Abstract: The inventive 2-step-optimization procedure that addresses the generalized routing and wavelength assignment problem with variable number of combined 1+1 dedicated and shared connections for the first time. The proposed procedure results a solution in time that is polynomial of the input size. Thus, the time complexity of the 2-step-optimization procedure is significantly less than that of existing methods.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: March 10, 2015
    Assignee: NEC Laboratories America, Inc.
    Inventors: Ankitkumar N. Patel, Philip Nan Ji, Yoshiaki Aono, Daisuke Taniguchi