Patents Examined by Kenneth R. Horlick
  • Patent number: 11788116
    Abstract: A method for the analysis of minimal residual disease is provided. In some embodiments, the method comprises obtaining multiple pairs of primers designed to amplify sequences that contain a plurality of sequence variations that have been previously identified in a patient's tumor. Amplicons are then obtained through a targeted multiplex amplification that amplifies those sequences from cell-free DNA isolated from a plasma sample. The amplicons are sequenced and two or more of the sequence variations are detected from sequence reads, wherein the detecting comprises comparing a quantity of sequence reads containing a sequence variation against a threshold value. A score is then calculated for the patient sample based on the combined allele frequencies of the detected two or more sequence variations, wherein the score indicates the presence of minimal residual disease.
    Type: Grant
    Filed: March 17, 2023
    Date of Patent: October 17, 2023
    Assignee: INIVATA LTD.
    Inventors: Vincent Plagnol, Tim Forshew, Samuel Woodhouse, Andrew Lawson, Matthew Smith
  • Patent number: 11781185
    Abstract: Provided herein are fluorescently-labeled nucleotide conjugates for nucleic acid analysis. Also provided are reagents used for forming binding complexes between a fluorescently-labeled nucleotide conjugate and a target nucleic acid sequence in the presence of one or more reagents disclosed herein. Binding complexes can be detected in the presence of the one or more reagents. For example, the one or more reagents may contain a photobleaching reducing agent configured to reduce photobleaching resulting from use of the fluorescently-labeled nucleotide conjugate to form the binding complex in a nucleic acid analysis. Such nucleic acid analysis may be used to identify sites of nucleobase binding or incorporation between the target nucleic acid sequence and one or more nucleotide moieties of the fluorescently-labeled nucleotide conjugate in a nucleic acid sequence reaction.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: October 10, 2023
    Assignee: ELEMENT BIOSCIENCES, INC.
    Inventors: Sinan Arslan, Molly He, Michael Previte, Ramreddy Tippana, Hua Yu, William Light, Junhua Zhao
  • Patent number: 11773453
    Abstract: The present disclosure provides a system and method for the detection of rare mutations and copy number variations in cell free polynucleotides. Generally, the systems and methods comprise sample preparation, or the extraction and isolation of cell free polynucleotide sequences from a bodily fluid; subsequent sequencing of cell free polynucleotides by techniques known in the art; and application of bioinformatics tools to detect rare mutations and copy number variations as compared to a reference. The systems and methods also may contain a database or collection of different rare mutations or copy number variation profiles of different diseases, to be used as additional references in aiding detection of rare mutations, copy number variation profiling or general genetic profiling of a disease.
    Type: Grant
    Filed: January 20, 2023
    Date of Patent: October 3, 2023
    Assignee: Guardant Health, Inc.
    Inventor: AmirAli Talasaz
  • Patent number: 11773452
    Abstract: The disclosure provides methods and systems of analyzing single cells by simultaneously separating cells into monodisperse droplets and tagging each nucleic acid molecule from the cells with barcodes unique to each droplet. The methods and systems combine template particles with a plurality of single cells in a tube, generate in the tube monodispersed droplets encapsulating a single one of the template particles and a single one of the single cells, release nucleic acid molecules from the single cells and provide each nucleic acid molecule with a barcode unique to the respective droplet. The nucleic acid molecules can then be analyzed by any known method, for example by sequencing the nucleic acid molecules.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: October 3, 2023
    Assignee: Fluent Biosciences Inc.
    Inventors: Kristina Fontanez, Robert Meltzer, Yi Xue, Sepehr Kiani
  • Patent number: 11767555
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: September 26, 2023
    Assignee: Guardant Health, Inc.
    Inventors: Amirali Talasaz, Helmy Eltoukhy
  • Patent number: 11767554
    Abstract: Provided herein are synthetic size standards that allow one to detect size bias in a sample that includes a plurality of polynucleotides. The size standards can provide an internal control to detect and correct for size bias in data obtained after manipulating and/or processing of sample polynucleotide. Also provided herein are methods for detecting size bias in a sample or in a sequencing run.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: September 26, 2023
    Assignee: REGENTS OF THE UNIVERSITY OF MINNESOTA
    Inventors: Daryl M. Gohl, Kenneth B. Beckman
  • Patent number: 11767556
    Abstract: Disclosed herein in are methods and systems for determining genetic variants (e.g., copy number variation) in a polynucleotide sample. A method for determining copy number variations includes tagging double-stranded polynucleotides with duplex tags, sequencing polynucleotides from the sample and estimating total number of polynucleotides mapping to selected genetic loci. The estimate of total number of polynucleotides can involve estimating the number of double-stranded polynucleotides in the original sample for which no sequence reads are generated. This number can be generated using the number of polynucleotides for which reads for both complementary strands are detected and reads for which only one of the two complementary strands is detected.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: September 26, 2023
    Assignee: Guardant Health, Inc.
    Inventors: AmirAli Talasaz, Helmy Eltoukhy, Stefanie Ann Ward Mortimer
  • Patent number: 11767561
    Abstract: The present invention encompasses methods and kits employing pattern recognition receptor expression as a measure of systemic health in a subject afflicted with an oral health condition. In particular, the present invention is directed to methods involving measurement of the expression levels of one or more Pattern Recognition Receptors including but not limited to Toll-Like Receptors, myeloid differentiation primary response gene 88 (MyD88), and Nucleotide Binding oligomerization domain containing protein 1 (NOD1), in a companion animal, e.g., a dog or a cat, afflicted with an oral health condition. The described methods enable evaluation of the systemic health of the animal afflicted with an oral health condition by measuring expression levels of the indicated genes as compared to suitable controls.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: September 26, 2023
    Assignee: Hill's Pet Nutrition, Inc.
    Inventors: Samer Al-Murrani, Dale S. Scherl
  • Patent number: 11761025
    Abstract: A method for preserving and processing cell-free nucleic acids located within a blood sample is disclosed, wherein a blood sample containing cell-free nucleic acids is treated to reduce both blood cell lysis and nuclease activity within the blood sample. The treatment of the sample aids in increasing the amount of cell-free nucleic acids that can be identified and tested while maintaining the structure and integrity of the nucleic acids.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: September 19, 2023
    Assignee: STRECK LLC
    Inventor: M. Rohan Fernando
  • Patent number: 11761038
    Abstract: Provided herein are methods of identifying a location of an RNA in a sample that include: (a) contacting the sample with an array comprising capture probes, where a capture probe comprises a capture domain and a spatial barcode; (b) releasing the RNA from the sample; (c) extending a 3? end of the capture probe using the capture domain-bound RNA as a template; (d) generating nick(s) in the extended capture probe-hybridized RNA and performing random-primed DNA synthesis; (e) performing end repair on the second strand DNA molecule; (f) adding a single adenosine nucleotide to the 3? end of the extended capture probe; (g) ligating a double-stranded sequencing adaptor to the double-stranded DNA product; and (h) determining all or a part of the sequence of the RNA, and the sequence of the spatial barcode, or complements thereof, and using the determined sequences to identify the location of the RNA in the sample.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: September 19, 2023
    Assignee: 10x Genomics, Inc.
    Inventor: Marlon Stoeckius
  • Patent number: 11761040
    Abstract: Methods and compositions for protecting DNA from light-induced damage and other modifications that occur during DNA sequencing using fluorescent dyes are disclosed.
    Type: Grant
    Filed: April 19, 2021
    Date of Patent: September 19, 2023
    Assignee: MGI Tech Co., Ltd.
    Inventors: Snezana Drmanac, Matthew J. Callow, Radoje T. Drmanac
  • Patent number: 11753673
    Abstract: Provided are methods for determining a location of a target nucleic acid in a biological sample including: disposing the biological sample onto an array including a plurality of capture probes, where a first capture probe includes a first spatial barcode and a capture domain and a second capture probe includes a second spatial barcode and the capture domain. The second capture probe is not covered by the biological sample on the array and is contacted with a solution comprising TdT and one or more dideoxynucleotides, such that a dideoxynucleotide is incorporated into the second capture domain. Target nucleic acids are captured by the first capture probe, and the sequence of the first spatial barcode or a complement thereof and all or a portion of a sequence of the target nucleic acid, or a complement thereof, are used to determine the location of the target nucleic acid in the biological sample.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: September 12, 2023
    Assignee: 10x Genomics, Inc.
    Inventors: Jennifer Chew, David Michael Patterson
  • Patent number: 11739369
    Abstract: The present disclosure provides methods, systems, devices, kits, and reagents for performing single cell sequencing (e.g., single cell RNA sequencing) from a low volume, capillary blood (or any low volume blood sample which is not obtained from a vein or by venipuncture).
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: August 29, 2023
    Assignee: California Institute of Technology
    Inventors: Matthew W. Thomson, Tatyana Dobreva, David Brown, Jong Hwee Park
  • Patent number: 11732257
    Abstract: The present invention relates to methods of detecting region(s) of interest in a gene comprising a polyA tail. The region(s) of interest can include gene(s), region(s), mutation(s), deletion(s), insertion(s), indel(s), and/or translocation(s). The region(s) can be greater than or less than 1 kilobases from the polyA tail. Methods can include forming a library of single cell transcripts comprising the region(s) in close proximity to a cell barcode and a unique molecular identifier (UMI). Methods for distinguishing cells by genotype can include amplifying the transcripts using PCR methods and detecting the cell barcode and UMI using single cell sequencing methods. Transcripts can be enriched using tagged region-specific PCR primers. Cell barcodes can be brought into close proximity to the region(s) by circularizing the transcripts. Sequencing of the transcripts can include using primer binding sites added during PCR amplification and library indexes for multiplexed sequencing.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: August 22, 2023
    Assignees: Massachusetts Institute of Technology, The General Hospital Corporation
    Inventors: Peter van Galen, Volker Hovestadt, Travis Hughes, Marc H. Wadsworth, II, Bradley Bernstein, Alexander K. Shalek, Todd M. Gierahn, J. Christopher Love, Ang A. Tu
  • Patent number: 11713480
    Abstract: The present disclosure relates to materials and methods for spatial detection of nucleic acid in a tissue sample or a portion thereof. In particular, provided herein are materials and methods for detecting RNA so as to obtain spatial information about the localization, distribution or expression of genes in a tissue sample. In some embodiments, the materials and methods provided herein enable detection of gene expression in a single cell.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: August 1, 2023
    Assignee: The Regents of the University of Michigan
    Inventor: Jun Hee Lee
  • Patent number: 11708602
    Abstract: The present invention relates to, among other things, probes, compositions, methods, and kits for simultaneous, multiplexed detection and quantification of protein and/or nucleic acid expression in a user-defined region of a tissue, user-defined cell, and/or user-defined subcellular structure within a cell.
    Type: Grant
    Filed: October 8, 2019
    Date of Patent: July 25, 2023
    Assignees: NanoString Technologies, Inc., Board of Regents, The University of Texas System
    Inventors: Joseph M. Beechem, Charles Warren, Chris Merritt, Jaemyeong Jung, Dwayne L. Dunaway, Scott Crowder, Kristina Sorg, Gordon B. Mills
  • Patent number: 11702685
    Abstract: Methods for the high-throughput analysis of transgenic events are herein disclosed. The methods use libraries of sheared genomic DNA ligated to specialized adapters and pooled for sequence analysis and comparison to known genomic and insert sequence. The method finds use in detecting characterizing insertion site, transgene integrity, and transgene copy number.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: July 18, 2023
    Inventors: Mary Beatty, Kevin Hayes, Jenna Hoffman, Haining Lin, Gina Marie Zastrow-Hayes
  • Patent number: 11697845
    Abstract: The majority of glioblastomas can be classified into molecular subgroups based on mutations in the TERT promoter (TERTp) and isocitrate dehydrogenase 1 or 2 (IDH). These molecular subgroups utilize distinct genetic mechanisms of telomere maintenance, either TERTp mutation leading to telomerase activation or ATRX-mutation leading to an alternative lengthening of telomeres phenotype (ALT). However, about 20% of glioblastomas lack alterations in TERTp and IDH. These tumors, designated TERTpWT-IDHWT glioblastomas, did not have well-established genetic biomarkers or defined mechanisms of telomere maintenance. The genetic landscape of TERTpWT-IDHWT glioblastoma includes tumors that have chromosomal rearrangements upstream of TERT. These rearrangements define a novel molecular subgroup of glioblastoma, that is a telomerase-positive subgroup driven by TERT-structural rearrangements (IDHWT-TERTSV).
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: July 11, 2023
    Assignee: Duke University
    Inventors: Hai Yan, Bill H. Diplas
  • Patent number: 11692223
    Abstract: The present disclosure relates to the field of molecular biology and more specifically to microarrays and methods, including methods for modifying immobilized capture primers comprising: a) contacting a substrate comprising a plurality of immobilized capture primers with a plurality of template nucleic acids under conditions sufficient for hybridization to produce one or more immobilized template nucleic acids, and b) extending one or more immobilized capture primers to produce one or more immobilized extension products complementary to the one or more template nucleic acid.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: July 4, 2023
    Assignee: Illumina Cambridge Limited
    Inventors: Kevin L. Gunderson, Jingwei Bai, Matthew William Kellinger, John M. Beierle, Jonathan Mark Boutell, Roberto Rigatti, Maria Candelaria Rogert Bacigalupo, Boyan Boyanov, Klaus Maisinger
  • Patent number: 11685947
    Abstract: Methods and compositions for maintaining DNA contiguity for sequencing is provided.
    Type: Grant
    Filed: April 21, 2021
    Date of Patent: June 27, 2023
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Ronald Lebofsky, Jeremy Agresti