Patents Examined by Kevin M. Bernatz
  • Patent number: 10937951
    Abstract: A magnetoresistance effect element according to an aspect of the present disclosure includes a first ferromagnetic layer as a magnetization fixed layer including a ferromagnetic Heusler alloy, a second ferromagnetic layer as a magnetization free layer including a ferromagnetic Heusler alloy, and a nonmagnetic spacer layer provided between the first ferromagnetic layer and the second ferromagnetic layer, and the nonmagnetic spacer layer includes a nonmagnetic Fe group, Co group, or Ni group Heusler alloy.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: March 2, 2021
    Assignee: TDK CORPORATION
    Inventors: Katsuyuki Nakada, Kazuumi Inubushi
  • Patent number: 10930418
    Abstract: Disclosed is a magnetic field shielding unit for magnetic security transmission. The magnetic field shielding unit for magnetic security transmission includes a magnetic shielding layer formed of fragments of ferrite containing magnesium oxide (MgO) shredded to improve flexibility of the magnetic field shielding unit. The ferrite containing magnesium oxide has a real part (??) of the complex permeability of 650 or more at a frequency of 100 kHz. Accordingly, it is possible to prevent influence of a magnetic field on components of a mobile terminal device or a body of a user who uses the same, and to further increase the characteristics of the combined antennas even if the magnetic field shielding unit is combined with various kinds and purposes of antennas having various structures, shapes, sizes and intrinsic characteristics (inductance, resistivity, etc.).
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 23, 2021
    Assignee: Amosense Co., Ltd.
    Inventors: Woong Yong Lee, Seong Tae Kim, Kyung Pyo Hong
  • Patent number: 10921392
    Abstract: A stacked structure is positioned on a nonmagnetic metal layer. The stacked structure includes a ferromagnetic layer and an intermediate layer interposed between the nonmagnetic metal layer and the ferromagnetic layer. The intermediate layer includes a NiAlX alloy layer represented by Formula (1): Ni?1Al?2X?3 . . . (1), [X indicates one or more elements selected from the group consisting of Si, Sc, Ti, Cr, Mn, Fe, Co, Cu, Zr, Nb, and Ta, and satisfies an expression of 0<?<0.5 in a case of ?=?3/(?1+?2+?3)].
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: February 16, 2021
    Assignee: TDK CORPORATION
    Inventors: Kazuumi Inubushi, Katsuyuki Nakada
  • Patent number: 10923149
    Abstract: This aluminum alloy substrate for a magnetic recording medium has a metal structure made of an Al alloy having a composition including Si in a range of 18.0% by mass to 22.0% by mass, Ni in a range of 5.0% by mass to 8.5% by mass, Cu in a range of 2.5% by mass to 4.0% by mass, and Mg in a range of 0.8% by mass to 1.5% by mass with a remainder being Al, a primary-crystal Si precipitate having a maximum diameter of 0.5 ?m or more and an average particle diameter of 2 ?m or less is dispersed in the metal structure, a diameter is in a range of 53 mm to 97 mm, and a thickness is in a range of 0.2 mm to 0.9 mm.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: February 16, 2021
    Assignee: SHOWA DENKO K.K.
    Inventors: Takenori Hashimoto, Wataru Sato
  • Patent number: 10916267
    Abstract: This aluminum alloy substrate for a magnetic recording medium has a metal structure made of an Al alloy having a composition including Si in a range of 18.0% by mass to 22.0% by mass, Fe in a range of 4.0% by mass to 6.0% by mass, Cu in a range of 2.5% by mass to 4.0% by mass, and Mg in a range of 0.8% by mass to 1.5% by mass with a remainder being Al, a primary-crystal Si precipitate having a maximum diameter of 0.5 ?m or more and an average particle diameter of 2 ?m or less is dispersed in the metal structure, a diameter is in a range of 53 mm to 97 mm, and a thickness is in a range of 0.2 mm to 0.9 mm.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: February 9, 2021
    Assignee: SHOWA DENKO K.K.
    Inventors: Takenori Hashimoto, Wataru Sato
  • Patent number: 10916268
    Abstract: This substrate for a magnetic recording medium has a metal structure made of an Al alloy having a composition including Si in a range of 28.0% by mass to 32.0% by mass, Cu in a range of 2.5% by mass to 4.0% by mass, and Mg in a range of 0.8% by mass to 1.5% by mass with a remainder being Al, primary-crystal Si particles having a maximum diameter of 0.5 ?m or more and an average particle diameter of 2 ?m or less are dispersed in the metallic structure, a diameter of the substrate is in a range of 53 mm to 97 mm, and a thickness of the substrate is in a range of 0.2 mm to 0.9 mm.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: February 9, 2021
    Assignee: SHOWA DENKO K.K.
    Inventors: Takenori Hashimoto, Wataru Sato
  • Patent number: 10910556
    Abstract: Described is an apparatus which comprises: a heat spreading layer; a first transition metal layer adjacent to the heat spreading layer; and a magnetic recording layer adjacent to the first transition metal layer. Described is an apparatus which comprises: a first electrode; a magnetic junction having a free magnet; and one or more layers of Jahn-Teller material adjacent to the first electrode and the free magnet of the magnetic junction.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: February 2, 2021
    Assignee: Intel Corporation
    Inventors: Sasikanth Manipatruni, Ian A. Young, Dmitri E. Nikonov, Ravi Pillarisetty, Uygar E. Avci
  • Patent number: 10910008
    Abstract: The magnetic recording medium includes a non-magnetic support; a non-magnetic layer including a non-magnetic powder and a binding agent on the non-magnetic support; and a magnetic layer including a ferromagnetic powder, a binding agent, and a non-magnetic powder on the non-magnetic layer, in which a skewness Rsk obtained using an atomic force microscope in a measurement region of a surface of the magnetic layer having a size of 5 ?m×5 ?m is greater than 0, a maximum peak height Rmax is equal to or smaller than 30.0 nm, and the number of projections having a height equal to or greater than 10 nm is equal to or greater than 10, and a magnetic recording and reproducing device including: this magnetic recording medium; and a magnetic head.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: February 2, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Masahiko Mori, Yoshihiro Sawayashiki
  • Patent number: 10910009
    Abstract: The magnetic tape has a magnetic layer containing ferromagnetic powder and binder on a nonmagnetic support, wherein the centerline average surface roughness Ra as measured on the surface on the magnetic layer side of the magnetic tape is less than or equal to 1.8 nm, and the logarithmic decrement as determined by a pendulum viscoelasticity test on the surface on the magnetic layer side of the magnetic tape is less than or equal to 0.050.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 2, 2021
    Assignee: FUJIFILM Corporation
    Inventors: Masahito Oyanagi, Norihito Kasada, Toshio Tada, Takuro Sugiyama
  • Patent number: 10902874
    Abstract: The magnetic tape includes a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which an absolute value ?N of a difference between a refractive index Nxy measured regarding an in-plane direction of the magnetic layer and a refractive index Nz measured regarding a thickness direction of the magnetic layer is 0.25 to 0.40, and a coefficient of friction measured regarding a base portion of a surface of the magnetic layer is equal to or smaller than 0.30, a magnetic tape cartridge and a magnetic tape apparatus including this magnetic tape.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 26, 2021
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10886045
    Abstract: A ferrite sheet includes acicular ferrite powder, and has a uniaxially-oriented magnetic direction. The ferrite sheet is capable of remarkably increasing magnetic permeability and saturation magnetization, and accordingly is capable of remarkably improving the power efficiency of an electronic device by minimizing magnetic field leakage when being applied to a shielding sheet.
    Type: Grant
    Filed: May 30, 2016
    Date of Patent: January 5, 2021
    Assignee: EMW CO., LTD.
    Inventors: Won Mo Seong, In Seung Baek
  • Patent number: 10872633
    Abstract: A magnetic recording medium according to a first technique includes an elongated substrate having a first surface and a second surface, a first reinforcing layer disposed on the first surface, a second reinforcing layer disposed on the second surface, an adhesion suppressing layer disposed on the second reinforcing layer, and a recording layer disposed on the first reinforcing layer or the adhesion suppressing layer.
    Type: Grant
    Filed: May 11, 2017
    Date of Patent: December 22, 2020
    Assignee: Sony Corporation
    Inventors: Eiji Nakashio, Yuta Akimoto, Tomoe Sato, Yoichi Kanemaki, Nobuyuki Sasaki, Masaru Terakawa, Kazuya Hashimoto, Katsunori Maeshima, Minoru Yamaga, Hikaru Terui, Hiroyuki Kobayashi
  • Patent number: 10867630
    Abstract: The average thickness tT of a magnetic recording medium meets the requirement that tT?5.5 [?m], and the dimensional change amount ?w in the width direction of the magnetic recording medium with respect to the tension change in the longitudinal direction of the magnetic recording medium meets the requirement that 700 ppm/N??w.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: December 15, 2020
    Assignee: Sony Corporation
    Inventors: Noboru Sekiguchi, Minoru Yamaga
  • Patent number: 10858497
    Abstract: A low viscosity polysulfide sealant composition. The composition comprises a curable polysulfide polymer; a crosslinking agent; and a plurality of core-shell particles. The core-shell particles comprise: a core comprising a ferromagnetic material; and a shell comprising silica treated with an organic sulfur containing compound. The shell is capable of bonding with the polysulfide polymer.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: December 8, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Andrew P. Nowak, Sophia S. Yang, Thomas I. Boundy, Darrin M. Hansen, Alain A. Adjorlolo, Carissa A. Pajel, Eliana V. Ghantous
  • Patent number: 10861487
    Abstract: A refractive index nL and an attenuation rate kL of a magnetic layer are obtained by irradiating linearly polarized light at an irradiation angle of 70° from a lengthwise direction of the magnetic layer to the surface of the magnetic layer, and a vertical reflectance RL during vertical incidence of the linearly polarized light in the lengthwise direction is obtained based on nL and kL. A refractive index nT and an attenuation rate kT of the magnetic layer are obtained by irradiating linearly polarized light at an irradiation angle of 70° from a width direction of the magnetic layer to the surface of the magnetic layer, and a vertical reflectance RT during vertical incidence of the linearly polarized light in the width direction is obtained from nT and kT. If a variation rate A (%) of RL and RT is A=|RL/RT?1|×100, the relationship A?10% is established.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: December 8, 2020
    Assignee: Maxell Holdings, Ltd.
    Inventors: Shinji Kawakami, Toshio Kawakita, Masao Fujita
  • Patent number: 10854231
    Abstract: Provided are a magnetic recording medium, in which a magnetic layer includes ferromagnetic hexagonal ferrite powder, a binding agent, and an oxide abrasive, an intensity ratio Int(110)/Int(114) obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic recording medium is 0.65 to 1.00, a coefficient of friction measured regarding a base portion of a surface of the magnetic layer is equal to or smaller than 0.30, and an average particle diameter of the oxide abrasive obtained from a secondary ion image obtained by irradiating the surface of the magnetic layer with a focused ion beam is 0.04 ?m to 0.08 ?m, and a magnetic recording and reproducing device including this magnetic recording medium.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Eiki Ozawa
  • Patent number: 10854230
    Abstract: The magnetic tape includes a magnetic layer including ferromagnetic powder, non-magnetic powder, and a binding agent and a back coating layer including non-magnetic powder and a binding agent, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic tape is 0.65 to 1.00, and a logarithmic decrement acquired by a pendulum viscoelasticity test performed regarding a surface of the back coating layer is equal to or smaller than 0.060.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Toshio Tada, Eiki Ozawa, Takuto Kurokawa
  • Patent number: 10854227
    Abstract: The magnetic recording medium includes a non-magnetic support and a magnetic layer which contains ferromagnetic powder and a binder, in which the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, the magnetic layer contains an abrasive, Int (110)/Int (114) of a crystal structure of the hexagonal ferrite, determined by performing X-ray diffraction analysis on the magnetic layer by using an In-Plane method, to a peak intensity of a diffraction peak of (114) plane of the crystal structure is equal to or higher than 0.5 and equal to or lower than 4.0, a squareness ratio of the magnetic recording medium in a vertical direction is equal to or higher than 0.65 and equal to or lower than 1.00, and a logarithmic decrement obtained by performing a pendulum viscoelasticity test on a surface of the magnetic layer is equal to or lower than 0.050.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Norihito Kasada, Toshio Tada, Eiki Ozawa, Takuto Kurokawa
  • Patent number: 10854226
    Abstract: Provided are a magnetic tape including: a non-magnetic support; and a magnetic layer including ferromagnetic powder and a binding agent on the non-magnetic support, in which the magnetic layer has a timing-based servo pattern, a center line average surface roughness Ra measured regarding a surface of the magnetic layer is equal to or smaller than 1.8 nm, the ferromagnetic powder is ferromagnetic hexagonal ferrite powder, an intensity ratio of a peak intensity of a diffraction peak of a (110) plane with respect to a peak intensity of a diffraction peak of a (114) plane of a hexagonal ferrite crystal structure obtained by an X-ray diffraction analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, and a vertical direction squareness ratio of the magnetic tape is 0.65 to 1.00, and a magnetic tape device including this magnetic tape.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventor: Norihito Kasada
  • Patent number: 10854229
    Abstract: Provided is a magnetic tape in which an Ra measured regarding a surface of a magnetic layer is equal to or smaller than 1.8 nm, Int(110)/Int(114) of a hexagonal ferrite crystal structure obtained by an XRD analysis of the magnetic layer by using an In-Plane method is 0.5 to 4.0, a vertical squareness ratio of the magnetic tape is 0.65 to 1.00, full widths at half maximum of spacing distribution measured by optical interferometry regarding the surface of the back coating layer before and after performing a vacuum heating with respect to the magnetic tape are greater than 0 nm and equal to or smaller than 10.0 nm, and a difference between the spacings measured by optical interferometry regarding the surface of the back coating layer before and after performing the vacuum heating is greater than 0 nm and equal to or smaller than 8.0 nm.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 1, 2020
    Assignee: FUJIFILM Corporation
    Inventors: Eiki Ozawa, Toshio Tada, Norihito Kasada, Takuto Kurokawa