Patents Examined by Kianni
  • Patent number: 12007603
    Abstract: A photonic integrated circuit (PIC) system, preferably including a substrate, one or more photonic connections, and a plurality of circuit blocks. The circuit blocks preferably include one or more waveguides that are optically coupled to the photonic connections, such as by transition features. A method of PIC fabrication, preferably including defining a PIC structure and defining circuit blocks. The circuit blocks are preferably defined onto one or more template regions defined by the PIC structure. Photonic connections are preferably defined as part of the PIC structure. Transition features, such as transitions between the photonic connections and the circuit blocks, are preferably defined concurrently with defining the circuit blocks.
    Type: Grant
    Filed: March 1, 2023
    Date of Patent: June 11, 2024
    Assignee: Luminous Computing, Inc.
    Inventors: Lei Wang, Thomas W. Baehr-Jones, Mitchell A. Nahmias
  • Patent number: 11998269
    Abstract: Articles of manufacture, including terminations of or attachments to optical fibers are configured to substantially prevent axial emission and redirect radially most if not all light emanating from optical fibers. In that, a termination may include a fiber cap of a unitary construction of a tube and an optical element disposed to face a sealed end of the tube and dividing a hollow of the tube and having a conical surface, or an optical element dividing the hollow and complemented by a cone. An example of termination includes an optical fiber element having an up-tapered end with a maximum taper-diameter exceeding the core-diameter and ending at a conical element with an apex angle from about 70° to about 100°. Articles of manufacture additionally including mounting contraptions cooperating such terminations with cannulae to form an attachment to a laser system. Methods for transmitting light through such articles of manufacture.
    Type: Grant
    Filed: October 10, 2023
    Date of Patent: June 4, 2024
    Assignee: CYCLONE BIOSCIENCES, LLC
    Inventors: Stephen E. Griffin, Stuart F. Watson
  • Patent number: 11988838
    Abstract: The present application provides a diffractive optical waveguide for optical pupil expansion and a display device. The diffractive optical waveguide for optical pupil expansion comprises a waveguide substrate; a coupling-out grating disposed on or in the waveguide substrate and configured to couple input light out of the waveguide substrate by diffraction, wherein the coupling-out grating comprises a plurality of grating lines with widths; the plurality of grating lines are spaced in a cycle of a first predetermined period along a first direction and are spaced in a cycle of a second predetermined period along a second direction; each of the grating lines comprises a plurality of periodic structures in continuous and connected arrangement. Each of the periodic structures comprises a first edge and a second edge spaced in the first direction. The first predetermined period is defined as the distance between the first edge and the second edge in the first direction.
    Type: Grant
    Filed: March 9, 2023
    Date of Patent: May 21, 2024
    Assignee: JIAXING UPHOTON OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Chenhao Dou, Kehan Tian
  • Patent number: 11988876
    Abstract: A fiber optic connector includes: a front casing that includes a front stopping portion defining a receiving space, and two side stopping portions extending respectively from opposite sides of the front stopping portion, and each being formed with an engaging slot; and a rear casing that is provided for the front casing to be detachably connected thereto, and includes a main body portion defining two through slots which are in spatial communication with the receiving space, and two engaging portions protruding respectively from opposite sides of the main body portion, and each engaging the engaging slot of a respective one of the side stopping portions and disengagable from the same through manual operation.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: May 21, 2024
    Assignee: GLORIOLE ELECTROPTIC TECHNOLOGY CORP.
    Inventor: Hsien-Hsin Hsu
  • Patent number: 11988870
    Abstract: A photonic polarization splitter rotator (PSR) includes a substrate, a first optical waveguide disposed on the substrate at a first layer, the first optical waveguide having a substantially rectangular shape and longitudinally arranged between a first end of the first optical waveguide and a second end of the first optical waveguide, and a second optical waveguide arranged to have a partial and fixed amount of overlap over a predetermined length of the first optical waveguide.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: May 21, 2024
    Assignee: CISCO TECHNOLOGY, INC.
    Inventor: Jean-Luc Joseph Tambasco
  • Patent number: 11982921
    Abstract: A drive unit outputs a modulation signal based on a data signal input from an optical communication apparatus through a pluggable electric connector. An optical modulator outputs an optical signal generated by modulating a light output from a light source based on the modulation signal. A control unit controls a modulation operation of the optical modulator. The control unit outputs a driver signal instructing to start a setting operation to the optical communication apparatus. The optical communication apparatus monitors the modulation operation of the optical modulator in response to the driver signal and performs an operation of correcting the data signal and/or an operation of outputting a control signal representing a control setting for the modulation operation to the control unit based on a monitoring result. The control unit controls the modulation operation of the optical modulator based on the control signal when receiving the control signal.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: May 14, 2024
    Assignee: NEC CORPORATION
    Inventor: Katsuhiro Yutani
  • Patent number: 11976962
    Abstract: An object is to provide an optical fiber path search method, an optical fiber path search system, a signal processor, and a program that can be operated free of the effects of walls, supporting members, and the like so that only a signal generated by an acoustic wave propagating through the air can be extracted.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 7, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yoshifumi Wakisaka, Daisuke Iida, Kunihiro Toge, Tetsuya Manabe
  • Patent number: 11977262
    Abstract: A fiber optic alignment assembly can include first and second receivers positioned on a base. The first receiver can include a channel for receiving a collet of a first fiber optic ribbon such that the ferrule of the first fiber optic ribbon is positioned for engagement. The second receiver can include a channel for receiving a collet of a second fiber optic ribbon such that a ferrule of the second fiber optic ribbon is positioned for engagement with the ferrule of the first fiber optic ribbon.
    Type: Grant
    Filed: December 8, 2021
    Date of Patent: May 7, 2024
    Assignee: Amazon Technologies, Inc.
    Inventors: Shirley Elizabeth Ball, Kurt Dehut
  • Patent number: 11971582
    Abstract: Provided is an optical fiber adapter. The optical fiber adapter includes an adapter body, a shielding gate, a sleeve, and an elastic shield. One side wall of the adapter body is provided with a long groove. The shielding gate is disposed at a lower port of the adapter body. The shielding gate includes one end connected to the lower port of the adapter body and one end facing away from the lower port of the adapter body. The sleeve is sleeved on a periphery of a lower end portion of the adapter body. The elastic shield is disposed in the long groove. The elastic shield is fitted with one end portion of the shielding gate facing toward the elastic shield. The shielding gate, the sleeve, and the elastic shield form an anti-light-leakage cavity on an optical fiber access side of the optical fiber adapter.
    Type: Grant
    Filed: September 20, 2019
    Date of Patent: April 30, 2024
    Assignee: SUNCALL TECHNOLOGIES (SZ) CO., LTD
    Inventors: Hongbin Song, Xiaohui Liu, Masaya Nakagawa
  • Patent number: 11971591
    Abstract: A photonic assembly comprises: a photonic device comprising an output guide and an input guide cooperating with, respectively, a first output and a first input; a photonic element having a second output and a second input optically coupled to the first input and the first output; an optical isolator interposed in a first path between the first output and the second input, and imposing a first size on radiation propagating along the first path; and adjustment means interposed in a second path between the first input and the second output, the adjustment means being configured to impose on radiation propagating along the second path a second size equal to the first size.
    Type: Grant
    Filed: June 9, 2022
    Date of Patent: April 30, 2024
    Assignee: Scintil Photonics
    Inventors: Sylvie Menezo, Frédéric Mazur
  • Patent number: 11971584
    Abstract: A two-piece fiber optic connector and a corresponding two-piece adapter allow for the tripling of the optical fibers that can be used with a standard fiber-optic cassette. The two-piece fiber optic connector has a fold-over latch to engage the adapter. The two-piece adapter has at least one latch to engage the standard fiber-optic cassette to retain the two-piece adapter and the fiber optic connectors in the adapter within the cassette. This allows for the retrofitting and/or continued use of the standard fiber-optic cassette.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: April 30, 2024
    Assignee: US Conec Ltd.
    Inventors: Jason Higley, Darrell R. Childers
  • Patent number: 11966091
    Abstract: A multichannel optical coupler array can include a coupler housing structure and longitudinal waveguides. At least one of the longitudinal waveguides can be a vanishing core waveguide having an inner vanishing core having a first refractive index (N-1), an outer core having a second refractive index (N-2), and an outer cladding having a third refractive index (N-3). A refractive index transition between N-1 and N-2 can have a function form N(r), where r is a transverse distance from the inner vanishing core center. The function N(r) can be a smooth function having a positive average of the second derivative or function N(r) can be a step function with at least one step approximating the smooth function. The coupler housing structure may have non-circular holes formed by convex-shaped housing structure elements.
    Type: Grant
    Filed: October 25, 2021
    Date of Patent: April 23, 2024
    Assignee: Chiral Photonics, Inc.
    Inventors: Victor Il'ich Kopp, Jongchul Park, Daniel Neugroschl
  • Patent number: 11960123
    Abstract: An optical connection structure includes a first focus lens arranged between a first light incidence/emission end and an optical element, and a second focus lens arranged between a second light incidence/emission end and the optical element. The first focus lens and the second focus lens are arranged on an optical axis connecting the first light incidence/emission end and the second light incidence/emission end.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: April 16, 2024
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yohei Saito, Kota Shikama, Atsushi Aratake
  • Patent number: 11960152
    Abstract: A method for adjusting a transmission wavelength of signal light transmitted through an optical waveguide device provided with one or more optical waveguides through which the signal light having a wavelength of 1520 nm to 1560 nm and blue light having a wavelength of 375 nm to 455 nm pass, a groove through which the waveguide passes, and resin filled in the groove, including a step of passing the signal light and the blue light through the same or mutually different one or more optical waveguides and of passing the signal light and the blue light through the same or mutually different resin, the latter step changing a refractive index of the resin by irradiating the resin with the blue light so as to change the transmission wavelength of the signal light transmitted through the resin in accordance with a change in the refractive index of the resin.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: April 16, 2024
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Katsuhiko Hirabayashi, Nobutatsu Koshobu, Satomi Katayose, Ryoichi Kasahara
  • Patent number: 11960116
    Abstract: A structure includes a first waveguide and a second waveguide. The first waveguide includes a first strip portion and a first tapered tip portion connected to the first strip portion. The second waveguide includes a second strip portion and a second tapered tip portion connected to the second strip portion, wherein the first tapered tip portion of the first waveguide is optically coupled to the second tapered tip portion of the second waveguide, and the first waveguide and the second waveguide are configured to guide a light. In a region where the light is coupled between the first tapered tip portion and the second tapered tip portion, an effective refractive index of the first waveguide with respect to the light is substantially equal to an effective refractive index of the second waveguide with respect to the light.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: April 16, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Tsung Shih, Chewn-Pu Jou, Felix Ying-Kit Tsui, Stefan Rusu
  • Patent number: 11960124
    Abstract: A pull-back fiber cable installation for multi dwelling units includes a first distribution point disposed between a first group of twelve units and a second group of twelve units, a second distribution point disposed between a third group of twelve units and a fourth group of twelve units, and a twelve fiber distribution cable optically connected to the first and second distribution points. Each fiber of the distribution cable is cut between the first and second distribution point. A first portion of the cut fiber is spliced to a first drop cable that runs to a first unit of the second group of twelve units, and a second portion of the cut fiber is spliced to a second drop cable that runs to a first unit of the third group of twelve units.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: April 16, 2024
    Assignee: PPC BROADBAND FIBER LTD.
    Inventor: Shaun Trezise
  • Patent number: 11960125
    Abstract: Provided is an optical fiber adapter. The optical fiber adapter includes a first adapter body, a shielding gate elastically hinged to a lower end portion of the first adapter body, and a second adapter body whose a lower end portion is inserted into a cavity of the first adapter body. An end surface of the lower end portion of the second adapter body extends downward to form extension posts and an engagement arm, the extension posts are pressed against two ends of a hinge shaft of the shielding gate, and the engagement arm is exposed outside the shielding gate and is engaged with an optical fiber connector joint inserted into a lower end portion of the first adapter body. This structural design can facilitate the installation and fixation of the shielding gate, and thus a better light-shielding and dust-proof effect can be achieved.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: April 16, 2024
    Assignee: SUNCALL TECHNOLOGIES (SZ) CO., LTD
    Inventors: Xuewu Lei, Xiaohui Liu, Masaya Nakagawa
  • Patent number: 11953734
    Abstract: A fiber optic adapter includes a shell body defining an inner space, a dividing wall dividing the inner space into two receptacles, an installation seat, and a securing seat. The installation seat and the securing seat are respectively located in the receptacles. The securing seat includes a plurality of base walls connected in pairs, a plurality of pairs of clamping walls, and a plurality of clenching walls. Each base wall cooperates with a respective pair of the clamping walls and a respective clenching wall to form a ring-shaped structure, with each adjacent two of the base wall, the pair of clamping walls and the clenching wall defining a gap therebetween.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: April 9, 2024
    Assignee: GLORIOLE ELECTROPTIC TECHNOLOGY CORP.
    Inventor: Hsien-Hsin Hsu
  • Patent number: 11953737
    Abstract: An optical ferrule connector is provided. The optical ferrule connector includes a body including a beveled surface, a plurality of optical fibers embedded in the body, each of the plurality of optical fibers extending along a transmission direction and terminating in a fiber tip that is oriented coplanar to the beveled surface, and a plurality of optical elements, each optical element of the plurality of optical elements located at an associated fiber tip of an associated optical fiber, each optical element operable to manipulate or otherwise focus light into or out of a core of the associated optical fiber.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: April 9, 2024
    Assignee: Smiths Interconnect Canada Inc.
    Inventors: David Robert Rolston, Mohammadreza Sanadgol Nezami, Shubhankar Mishra, Shanglin Li
  • Patent number: 11953746
    Abstract: Cables having buffer elements formed with two-dimensional fillers are described. A cable may include at least one optical fiber, and a buffer element may be formed around the at least one optical fiber. The buffer element may be formed from a material that includes a polyolefin resin, a filler added to the polyolefin resin that includes a plurality of two-dimensional particles, and a compatibilizer. A jacket may be formed around the at least one optical fiber and the buffer element.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: April 9, 2024
    Assignee: Superior Essex International Inc.
    Inventors: Bo Xu, Christopher W. McNutt