Patents Examined by Kimberly Chong
  • Patent number: 10662431
    Abstract: Certain disclosed oligomers induce exon skipping during processing of myostatin pre-mRNA. The oligomers may be in a vector or encoded by the vector. The vector is used for inducing exon skipping during processing of myostatin pre-mRNA. A therapeutically effective amount of the oligomer may be administered to a subject patient such that exon skipping during processing of myostatin pre-mRNA is induced. The administration to a subject may be used in order to increase or maintain muscle mass, or slowing degeneration of muscle mass in the subject. The administration to a subject may ameliorate muscle wasting conditions, such as muscular dystrophy. Examples of such muscular dystrophies which may be so treated include Becker's muscular dystrophy, congenital muscular dystrophy, Duchenne muscular dystrophy, distal muscular dystrophy, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy (FSHD), limb-girdle muscular dystrophy, myotonic muscular dystrophy, and oculopharyngeal muscular dystrophy.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: May 26, 2020
    Assignee: ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
    Inventors: John George Dickson, Jagjeet Kaur Kang
  • Patent number: 10653624
    Abstract: The present disclosure relates to a method of delivering target materials into extracellular vesicles including exposing the target materials and the extracellular vesicles to extracorporeal shockwaves, a method of preparing target material-introduced extracellular vesicles, extracellular vesicles prepared by the method, drug delivery vehicles including extracellular vesicles, and a method of delivering target materials into cells. The present disclosure exposes extracellular vesicles derived from natural organisms such as animal cells, plant cells, and microorganisms including bacteria and eukaryotic bacteria as well as artificially produced extracellular vesicles to extracorporeal shockwaves extracellularly. Thus, the high-level energy extracorporeal shockwaves can be used to deliver the target material into the extracellular vesicle efficiently. When treating with extracorporeal shockwaves, the ability of target material-introduced extracellular vesicles to incorporate into target cells also increases.
    Type: Grant
    Filed: June 1, 2018
    Date of Patent: May 19, 2020
    Assignee: EXOLLENCE BIOTECHNOLOGY CO., LTD.
    Inventors: Kihwan Kwon, Jihwa Chung, Kyounghwa Kim
  • Patent number: 10655182
    Abstract: Disclosed herein is a method for diagnosing a renal allograft recipient's risk for developing fibrosis of the allograft and allograft loss. The method includes determining the expression levels of certain microRNAs, which have been determined to be predictive of an allograft recipient's risk. Also disclosed herein is a method of treating a renal allograft recipient to inhibit fibrosis of the allograft and allograft loss, as well as kits for use in the methods disclosed herein.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: May 19, 2020
    Assignee: Icahn School of Medicine at Mount Sinai
    Inventors: Barbara Murphy, Weijia Zhang
  • Patent number: 10655129
    Abstract: Disclosed herein are compounds, compositions and methods for modulating the expression of huntingtin in a cell, tissue or animal. Further provided are methods of slowing or preventing Huntington's Disease (HD) progression using an antisense compound targeted to huntingtin. Additionally provided are methods of delaying or preventing the onset of Huntington's Disease (HD) in an individual susceptible to Huntington's Disease (HD). Also provided are uses of disclosed compounds and compositions in the manufacture of a medicament for treatment of diseases and disorders.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: May 19, 2020
    Assignee: IONIS PHARMACEUTICALS, Inc.
    Inventor: Susan M. Freier
  • Patent number: 10639399
    Abstract: Provided is a use of one or more MicroRNA genes selected from miRNAs of Family Let-7, miR-21 or miR-222 in the construction of tissue engineered nerves and in the repair of peripheral nerve defects. An outer and/or internal surface or pores of a tissue engineered nerve graft are coated or adsorbed with polymeric nanomicrospheres carrying a Let-7 family miRNA inhibitor, miR-21, or miR-222, or a mimetic thereof, wherein the polymeric material is composed of biocompatible fibronectin and heparin. The regeneration of peripheral nerves and the construction of tissue engineered nerves are promoted by regulating the expression of MicroRNA genes which can effectively promote the proliferation of primary Schwann cells cultured in vitro and have an anti-apoptotic effect on neuronal cells. In-vivo test proves that bridging of the tissue engineered nerve graft can facilitate the regeneration of peripheral nerves, thus being useful in the treatment of peripheral nerve injury.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: May 5, 2020
    Assignee: NANTONG UNIVERSITY
    Inventors: Xiaosong Gu, Fei Ding, Xin Tang, Yumin Yang, Bin Yu, Shiying Li, Songlin Zhou, Luzhong Zhang, Yaxian Wang, Yun Gu, Hualin Sun
  • Patent number: 10640768
    Abstract: The present invention provides a screening method for pain suppressors, which method is characterized by using netrin-4 and/or a netrin-4 receptor to select a substance capable of inhibiting downstream signaling from netrin-4. According to the screening method of the present invention, pain suppressors useful as a preventive or therapeutic medicine for pain can be identified. The present invention also provides a pharmaceutical composition for prevention or treatment of pain, which composition comprises, as an active ingredient, a substance capable of inhibiting downstream signaling from netrin-4.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: May 5, 2020
    Assignee: OSAKA UNIVERSITY
    Inventors: Toshihide Yamashita, Yasufumi Hayano
  • Patent number: 10640788
    Abstract: Disclosed herein are methods and compositions useful in targeting a payload to, or editing a target nucleic acid, where a governing gRNA molecule is used to target, optionally inactivate, a Cas9 molecule or a Cas9 molecule/gRNA complex.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: May 5, 2020
    Assignees: Editas Medicine, Inc., The Broad Institute Inc., Massachusetts Institute of Technology, University of Iowa Reseach Foundation
    Inventors: Feng Zhang, Deborah Palestrant, Beverly Davidson, Jordi Mata-Fink, Edgardo Rodriguez, Alexis Borisy
  • Patent number: 10633660
    Abstract: The invention relates to antisense oligonucleotidic sequences (ODN) against Smad7 suitably modified, and their uses in medical field as therapeutic biological agents, in particular in the treatment of chronic inflammatory bowel disease, such as Crohn's disease and ulcerative colitis.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 28, 2020
    Assignee: Nogra Pharma Limited
    Inventor: Giovanni Monteleone
  • Patent number: 10632140
    Abstract: The methods and assays described herein relate to detection, diagnosis, and treatment of lung cancer, e.g., by detecting the level of expression of certain miRNAs described herein and/or by therapeutically increasing the level of those miRNAs.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: April 28, 2020
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Ana Brandusa Pavel, Joshua David Campbell, Marc Elliott Lenburg, Avrum Elliot Spira
  • Patent number: 10633655
    Abstract: The present invention features compositions and methods relating to tRNA-derived small RNAs (tsRNAs). Provided herein are oligonucleotide compositions that are complementary to tsRNAs, in particular leuCAGtsRNA, and methods of using the oligonucleotides for the regulation of respective tsRNA. Further provided are methods of inducing apoptosis through the inhibition of leuCAGtsRNA.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: April 28, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mark A. Kay, Hak Kyun Kim, Shengchun Wang
  • Patent number: 10626401
    Abstract: The invention relates to non-CpG single-stranded oligonucleotides (ssONs) for use in the treatment or prophylaxis of disorders of the skin and/or subcutaneous tissue, including pruritus, in a suitable formulation or in combination with other immunomodulatory treatments. The said ssONs have a length of at least 25 nucleotides and are stabilized by phosphorothioate internucleotide linkages and/or 2?-O-Methyl modifications.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: April 21, 2020
    Assignee: TIRMED PHARMA AB
    Inventors: Anna-Lena Spetz, Peter Jarver, Annette Skold
  • Patent number: 10619158
    Abstract: Provided herein are methods, compounds, and compositions for reducing expression of huntingtin mRNA and protein in an animal. Such methods, compounds, and compositions are useful to treat, prevent, delay, or ameliorate Huntington's disease, or a symptom thereof.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: April 14, 2020
    Assignee: IONIS Pharmaceuticals, Inc.
    Inventors: Gene Hung, C. Frank Bennett, Susan M. Freier, Holly Kordasiewicz, Lisa Stanek, Don W. Cleveland, Seng H. Cheng, Lamya Shihabuddin
  • Patent number: 10619157
    Abstract: In certain embodiments, methods, compounds, and compositions for treating B-cell lymphoma or hepatocellular carcinoma by inhibiting expression of STAT3 mRNA or protein in an animal are provided herein. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate B-cell lymphoma or hepatocellular carcinoma.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: April 14, 2020
    Assignee: Ionis Pharmaceuticals, Inc.
    Inventors: Stanley T. Crooke, Mason Yamashita
  • Patent number: 10610574
    Abstract: Methods of treating an age-related disorder in a subject are provided. Aspects of the methods include administering to the subject a nucleic acid vector including a coding sequence for telomerase reverse transcriptase (TERT) and/or telomerase RNA (TR). Gene therapy methods are also provided. Aspects of the invention further include compositions, e.g., nucleic acid vectors and kits, etc., that find use in methods of the invention.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: April 7, 2020
    Assignee: Sierra Sciences, LLC
    Inventors: William H. Andrews, Lancer K. Brown, Hamid Mohammadpour, Laura A. Briggs
  • Patent number: 10591489
    Abstract: Chronic inflammation is an increasing medical problem area of high socioeconomic significance. The invention relates to a method and a kit for diagnosing a molecular phenotype of a patient suffering from an illness accompanied by chronic inflammation, and to a medicament for treating such a patient. To that end, the gene expression of GATA-3 and/or Tbet in a biological isolate of the patient is measured and used for association with a molecular phenotype of the illness.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: March 17, 2020
    Assignee: STERNA BIOLOGICALS GMBH & CO. KG
    Inventors: Agnieszka Turowska, Joachim Bille
  • Patent number: 10584144
    Abstract: The presently-disclosed subject matter relates to an artificial RNA nanostructure molecule and method to treat brain tumor in a subject. More particularly, the presently disclosed subject matter relates to a RNA nanostructure containing a multiple branched RNA nanoparticle, a brain tumor targeting module, and an effective amount of a therapeutic agent. Further, the presently disclosed subject matter relates to a method of using the RNA nanostructure composition to treat brain tumor in a subject having or at risk of having brain tumor.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: March 10, 2020
    Assignee: UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION
    Inventors: Peixuan Guo, Carlo M. Croce, Tae Jin Lee, Farzin Haque, Hui Li
  • Patent number: 10577605
    Abstract: The invention relates to the use of an antisense compound for inducing exon inclusion as a treatment for Spinal Muscle Atrophy (SMA). More particularly it relates to inducing inclusion of exon 7 to restore levels of Survival Motor Neuron (SMN) protein encoded by the Survival Motor Neuron (SMN) gene.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: March 3, 2020
    Assignee: Sarepta Therapeutics, Inc.
    Inventors: Peter Linsley, Brian James Leppert
  • Patent number: 10570396
    Abstract: Cell death is induced and/or cell growth is suppressed for a cell having a mutation in the BRAF gene. A drug suppressing GST-? is comprised as an active ingredient.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: February 25, 2020
    Assignee: Nitto Denko Corporation
    Inventors: Yoshiro Niitsu, Hiroki Nishita
  • Patent number: 10548990
    Abstract: Double-stranded modified siRNA targeting a RecQL1 helicase gene includes a sense strand including the nucleotide sequence shown in SEQ ID NO: 1, and an antisense strand including the nucleotide sequence shown in SEQ ID NO: 2, wherein the sense strand includes 2?-substituted nucleotides at positions 2, 3, 4 and 13 in the nucleotide sequence shown in SEQ ID NO: 1, the sense strand further includes a 2?-substituted nucleotide(s) at one or more positions selected from the group consisting of positions 12, 14, 17, 18 and 19 in the nucleotide sequence shown in SEQ ID NO: 1, wherein the position 2? of the 2?-substituted nucleotides is —R1, —OR1, —R2OR1, —OR2OR1 or —R3OR2OR1, wherein R1 represents a C1-4 alkyl group, and R2 and R3 independently represent a C1-3 alkylene group.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: February 4, 2020
    Assignee: GeneCare Research Institute Co., Ltd.
    Inventors: Kazunobu Futami, Yasuhiro Furuichi, Satoshi Kaneto
  • Patent number: 10543226
    Abstract: The present disclosure provides pharmaceutical compositions comprising nucleic acids capable of targeting IGF-1R expression in M2 cells. The present disclosure also provides methods for the selective reduction of M2 cells by targeting expression of IGF-1R in these cells. The present disclosure further provides methods for treating cancer and enhancing therapeutic by targeting expression of IGF-1R in M2 cells in patients. The pharmaceutical composition of the present invention is effective when administered systemically to subjects in need thereof. The ease of administration of the pharmaceutical composition facilitates treatment and enhances patient compliance.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: January 28, 2020
    Assignee: Thomas Jefferson University
    Inventors: David W. Andrews, Douglas C. Hooper