Patents Examined by Kourtney R Salzman
  • Patent number: 7905999
    Abstract: A biosensor strip having a low profile for reducing the volume of liquid sample needed to perform an assay. In one embodiment, the biosensor strip comprises an electrode support; an electrode arrangement on said electrode support; a cover; a sample flow channel; and an incompressible element placed between said cover and said electrode support, the incompressible element providing an opening in at least one side or in the distal end of said sample flow channel to provide at least one vent in said sample flow channel. In another embodiment, the biosensor strip comprises an electrode support; an electrode arrangement on said electrode support; a cover; and a sample flow channel, the cover having a plurality of openings formed therein, at least one of the openings in register with said sample flow channel. The invention further includes methods for preparing such a biosensor strips in a continuous manner.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: March 15, 2011
    Assignee: Abbott Laboratories
    Inventors: Adrian Petyt, Andrew Savage, Simon A. Hector
  • Patent number: 7887684
    Abstract: A gas sensor element having an element body, the element body including: a ceramic heater having ceramic layers and a heater element embedded in the ceramic layers; and a solid electrolyte layer including a detection section covered by a pair of electrodes, the solid electrolyte layer being laminated together with the ceramic heater. Furthermore, the element body has a width at a front portion including the detection section smaller than at a rear portion, and at least both side edge faces of the front portion of the element body are covered with a porous layer.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: February 15, 2011
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Shinya Awano, Keisuke Makino, Yoshiaki Kuroki, Takao Kojima, Masashi Ando
  • Patent number: 7868244
    Abstract: A concentrated solar energy device is connectable to a solar array and includes a photovoltaic cell that provides electrical energy and heat from a solar energy source, a thermally conductive element, concentrating optics, and a housing. The concentrating optics are positioned between the solar energy source and the photovoltaic cell and are aligned with the solar energy source. The thermally conductive element functions to dissipate heat from the photovoltaic cell. The housing and the concentrating optics are attached to one another and together enclose the photovoltaic cell and a portion of the thermally conductive element. An optical film may be positioned over the concentrating optics during assembly, installation, and/or maintenance of the concentrated solar energy device.
    Type: Grant
    Filed: August 21, 2006
    Date of Patent: January 11, 2011
    Assignee: United Technologies Corporation
    Inventors: Satyam Bendapudi, Rakesh Radhakrishnan, Yu Chen, Yirong Jiang
  • Patent number: 7794778
    Abstract: An amperometric sensor for uric acid and a manufacturing method thereof are disclosed, in which polyacrylamide is used to fix catalase, uricase and ferrocenecarboxylic acid on a working electrode. In determining concentration of uric acid, hydrogen peroxide is produced when enzyme and uric acid react with each other and then a reduction current generated from enzyme on the electrode with an external voltage 200 mV applied is detected. In determining concentration of uric acid, a concentration range of 2.5-20 mg/dl is achieved and sensibility of the sensor in a linear portion is 5.17 uAcm?2(mg/dl)?1. In addition, reaction time required for the reaction between enzyme and uric acid is 5.17 uAcm?2(mg/dl)?1.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: September 14, 2010
    Assignee: Chung Yuan Christian University
    Inventors: Shen-Kan Hsiung, Jung-Chuan Chou, Tai-Ping Sun, Mei-Ling Cheng
  • Patent number: 7780829
    Abstract: A sensor element for the determination of the concentration of gas components in a gas mixture, particularly of the concentration of gas components in the exhaust of internal combustion engines, with two electrodes, that together with a solid electrolyte constitute a pumping cell, whose outer pumping electrode is exposed to the gas mixture by way of a porous protective layer, and with a reference electrode, which is disposed on the solid electrolyte and is exposed to a reference gas, and which with a solid electrolyte and a Nernst electrode constitutes a concentration or Nernst cell, is thereby characterized in that at least periodically the Nernst voltage between the outer pumping electrode and the Nernst electrode is tapped and analyzed.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: August 24, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Lothar Diehl, Marcus Scheffel
  • Patent number: 7754964
    Abstract: An apparatus and method for solar conversion using nanocoax structures are disclosed herein. A nano-optics apparatus for use as a solar cell comprising a plurality of nano-coaxial structures comprising an internal conductor surrounded by a semiconducting material coated with an outer conductor; a film having the plurality of nano-coaxial structures; and a protruding portion of the an internal conductor extending beyond a surface of the film. A method of fabricating a solar cell comprising: coating a substrate with a catalytic material; growing a plurality of carbon nanotubes as internal cores of nanocoax units on the substrate; oxidizing the substrate; coating with a semiconducting film; and filling with a metallic medium that wets the semiconducting film of the nanocoax units.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: July 13, 2010
    Assignee: The Trustees of Boston College
    Inventors: Krysztof J. Kempa, Michael J. Naughton, Zhifeng Ren, Yang Wang, Jakub A. Rybczynski
  • Patent number: 7741557
    Abstract: An apparatus for obtaining energy from a polychromatic radiant energy source has a light concentrator for concentrating and redirecting incident radiant energy, having an optical axis, and a spectral separator disposed along the optical axis, apart from the light concentrator and in the path of concentrated, redirected radiant energy. The spectral separator has a first planar surface treated to reflect a first spectral band of light toward a first focal region and to transmit a second spectral band and a second planar surface spaced apart from the first planar surface and oblique with respect to the first planar surface. The second planar surface is treated to reflect the second spectral band back through the first planar surface and toward a second focal region spaced apart from the first focal region. First and second light receivers are disposed nearest each respective focal region for receiving the first and second spectral bands.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: June 22, 2010
    Assignee: Corning Incorporated
    Inventors: Joshua Monroe Cobb, John H Bruning
  • Patent number: 7732704
    Abstract: The present invention provides an electrically conductive paste for connecting thermoelectric materials, the paste comprising a specific powdery oxide and at least one powdery electrically conductive metal selected from the group consisting of gold, silver, platinum, and alloys containing at least one of these metals. By connecting a thermoelectric material to an electrically conductive substrate with the electrically conductive paste of the invention, a suitable electroconductivity is imparted to the connecting portion of the thermoelectric element. Further, the thermal expansion coefficient of the connecting portion can be made close to that of the thermoelectric material. Therefore, even when high-temperature power generation is repeated, separation at the connecting portion is prevented and a favorable thermoelectric performance can be maintained.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: June 8, 2010
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Ryoji Funahashi
  • Patent number: 7722749
    Abstract: A sensor including a species selective electrode and a reference electrode having an electrolyte layer disposed therebetween; a reference gas channel in fluid communication with the reference electrode; a heater and a temperature sensor; wherein the species selective electrode is disposed on a first side of an insulating layer separating the species selective electrode from the electrolyte layer, the insulating layer having a first substantially solid area and a second area having an opening pattern extending through the insulating layer; the species selective electrode comprising a species sensing electrode portion disposed on the opening pattern of the insulating layer so as to contact the electrolyte layer through the opening pattern and a non-active electrode lead portion disposed over the first substantially solid area so that the non-active electrode lead portion is in electrical communication with the species sensing electrode portion and is free from contact with the electrolyte layer.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: May 25, 2010
    Assignee: Delphi Technologies, Inc.
    Inventors: Da Yu Wang, Walter Thomas Symons, Robert Jerome Farhat, Sheng Yao, Joachim Kupe
  • Patent number: 7704359
    Abstract: The present application relates to a pressurized reference electrode and to a process for its production, said reference electrode comprising a chamber (11) which has a flowable reference electrolyte, and a portion of the wall of said chamber being formed from porous material (10) for contacting said reference electrode with a measuring medium, and said chamber being under overpressure, which is characterized in that the overpressure is generated in said reference electrode by introducing a gas or/and a liquid through said porous material of the wall in said chamber, or introducing said reference electrolyte into said chamber and closing said chamber under pressure.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: April 27, 2010
    Assignee: Hamilton Bonaduz AG
    Inventors: Fabio Sovrano, Rolf Thrier
  • Patent number: 7686932
    Abstract: A gas sensor including: a cylindrical metal shell; a detection element having a detection portion provided on a front end side thereof, the detection element being fixed inside the metal shell while the detection portion of the detection element protrudes from a front end side of the metal shell; and an element protection cap having ventholes, the element protection cap being fixed to the metal shell so that the detection portion of the detection element is covered with the element protection cap. A crimping cylindrical portion is provided which extends to a front end side of the metal shell. A protrusion portion of the element protection cap which abuts a metal ring packing is provided with concave and convex portions outward along an outer circumferential direction. As such, the metal ring packing is deformed so as to be interlocked with the concave and convex portions when the crimping cylindrical portion is compressively deformed.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: March 30, 2010
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Hisaharu Nishio, Takashi Nakao, Kazuhiro Kohzaki, Keiichi Adachi
  • Patent number: 7678261
    Abstract: Disclosed are an apparatus and a method for determining whether or not a biosensor comprising two working electrodes and one reference electrode is well manufactured, and for rapidly and accurately quantifying a specific substance contained in a biological sample. The method comprises the steps of: sequentially supplying the respective working electrodes with power supply voltage; sequentially detecting the amounts of current flowing in the respective working electrodes by virtue of the supplied power supply voltage; re-supplying the two working electrodes with power supply voltage after a predetermined time to redetect the amounts of current flowing in the respective working electrodes; reading concentrations corresponding to the amounts of current detected from a memory, and calculating an average value from the read concentrations; and checking whether or not the concentrations read from memory are within a predetermined critical range to display an error message or the calculated average value.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: March 16, 2010
    Assignee: Infopia Co., Ltd.
    Inventors: Byung Woo Bae, Heon-Kwon Lee, Sung Dong Lee, Won Dong Kim, Jung Shik Song, Jin-A Yoo
  • Patent number: 7649139
    Abstract: The present invention provides a thermoelectric element in which a thin film of p-type thermoelectric material and a thin film of n-type thermoelectric material, which are formed on an electrically insulating substrate, are electrically connected, in which the p-type thermoelectric material and the n-type thermoelectric material are selected from specific complex oxides with a positive Seebeck coefficient and specific complex oxides with a negative Seebeck coefficient, respectively. The present invention also provides a thermoelectric module using the thermoelectric element(s) and a thermoelectric conversion method. In the thermoelectric element of the present invention, since a p-type thermoelectric material and an n-type thermoelectric material are formed into a thin film on an electrically insulating substrate, the thermoelectric element of the invention can be formed on substrates having various shapes, thereby providing thermoelectric elements having various shapes.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: January 19, 2010
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Toshiyuki Mihara, Ryoji Funahashi, Jun Akedo, Sou Baba, Masashi Mikami
  • Patent number: 7645365
    Abstract: An ionically conductive ceramic element (20) comprises a plurality of tubes (30) each having interior (24) and exterior (38) surfaces and closed (48) and open (50) ends. A tube support (14) receives open tube ends (50). A first electrically conductive coating (36) is formed on the exterior tube surfaces (38). A second coating (22) is formed on the interior tube surfaces (24). A bottom electrically conductive stripe (16) makes electrical connections between second coatings (22) on the interior tube surfaces (24). A top electrically conductive stripe (40) creates electrical connections between first coatings (36) on the exterior tube surfaces (38). The top and bottom stripes are connected such that at least one stripe (40) on the top is electrically connected to at least one stripe (16) on the bottom.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 12, 2010
    Assignee: Carleton Life Support Systems, Inc.
    Inventors: Zhonglin Wu, Tuan Q. Cao
  • Patent number: 7641785
    Abstract: A sensor for blood component analysis that can correct the effect of a hematocrit easily is provided. The sensor includes an analysis portion including a working electrode, a counter electrode, and a reagent portion. The reagent portion includes an oxidoreductase that reacts with the blood component and a mediator, and the blood component is measured by causing a redox reaction between the blood component and the oxidoreductase in the presence of the mediator and detecting a redox current generated by the redox reaction by the working electrode and the counter electrode. In this sensor, the reagent portion further includes a hemolyzing agent (e.g., sodium cholate) for hemolyzing an erythrocyte, and when detecting the redox current, the erythrocyte is hemolyzed with the hemolyzing agent so as to cause hemoglobin released to an outside of the erythrocyte to react with the mediator and a current generated by this reaction also is detected to correct an effect of a hematocrit.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: January 5, 2010
    Assignee: Panasonic Corporation
    Inventors: Teppei Shinno, Shin Ikeda
  • Patent number: 7628907
    Abstract: A gas sensor is provided for detecting one or more gases in a gas sample. The gas sensor includes a substrate, a solid electrolyte layer including lanthanum oxide for sensing carbon dioxide, a heating element thermally coupled to the solid electrolyte layer, and a controller coupled to the heating element and the solid electrolyte layer. The controller heats the heating element so that the solid electrolyte layer reaches an operating. Methods of sensing carbon dioxide and humidity are also disclosed.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: December 8, 2009
    Assignee: Honeywell International Inc.
    Inventors: Yuandong Gu, Barrett E. Cole, Robert E. Higashi
  • Patent number: 7611621
    Abstract: A system and method for correcting the oxygen effect on oxidase-based analyte sensors includes an oxygen sensor with a working electrode, a reagent matrix disposed on at least the working electrode that contains a reduced form of a redox mediator, an oxidase and a peroxidase, an oxidase-based analyte sensor, a means for determining the oxygen concentration in a portion of a fluid sample using the oxygen sensor, means for determining an analyte concentration in another portion of the fluid sample using the oxidase-based analyte sensor, and means for using the oxygen concentration in the fluid sample to determine a corrected analyte concentration in the fluid sample.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: November 3, 2009
    Assignee: Nova Biomedical Corporation
    Inventors: Xiaohua Cai, Kara Alesi, Chung Chang Young
  • Patent number: 7611613
    Abstract: A total NOx sensor with minimal interferences from CO and O2 includes a yttria-stabilized zirconia (YSZ) pellet and a Pt-loaded zeolite Y layer. Furthermore, three platinum wires are attached to the YSZ surface which operate as the working, counter and reference electrode. A potentiostat is connected to the electrodes to maintain a fixed potential between the reference and working electrode. The potentiostat then monitors the relationship between time and current through the counter electrode.
    Type: Grant
    Filed: August 2, 2005
    Date of Patent: November 3, 2009
    Assignee: The Ohio State University Research Foundation
    Inventors: Prabir K. Dutta, Jiun-Chan Yang
  • Patent number: 7608777
    Abstract: A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: October 27, 2009
    Assignee: BSST, LLC
    Inventors: Lon E. Bell, Douglas Todd Crane
  • Patent number: 7578914
    Abstract: A gas concentration measuring apparatus for use in air-fuel ratio control of motor vehicle engines is provided which is designed to determine the concentrations of oxygen at different resolutions within a wide and a narrow range using a first and a second sensor signal which are amplified by first and second operational amplifiers at different amplification factors. The apparatus samples values of the first sensor signal at different concentrations of oxygen to find an output characteristic error of the first operational amplifier and determines an actual concentration of oxygen to calculate an output characteristic error of the second operational amplifier using the one of the first operational amplifier and the actual concentration of oxygen. This permits values of the first and second sensor signals to be corrected so as to compensate for the output characteristics of the first and second operational amplifiers.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: August 25, 2009
    Assignee: DENSO Corporation
    Inventors: Tomoo Kawase, Eiichi Kurokawa