Patents Examined by Kuassi A Ganmavo
  • Patent number: 9094758
    Abstract: An audio transmission line having an audio transmission plug and an inline controller and a headset is disclosed In the inline controller, one signal input end of signal input module is coupled to one signal transmission unit of the audio transmission plug. The first control part mechanically links up the first and second conductive part, for controlling the input end of first conductive part for connecting with several signal input ends of signal input module, and controlling the output end of the first conductive part for connecting with the input end of one wire circuit, or, controlling the input end of the second conductive part for connecting with the output end of the same wire circuit, and controlling the output end of the second conductive part for connecting with signal output ends of signal output module.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: July 28, 2015
    Assignee: POWERTECH INDUSTRIAL CO., LTD.
    Inventors: Yu-Lung Lee, Po-Hua Hsu
  • Patent number: 9084063
    Abstract: A portable audio device, which includes active noise cancellation circuitry, a hearing aid compliant magnetic radiator, and a speaker/earpiece, is surrounded by ambient acoustic noise. The active noise cancellation circuitry provides an anti-noise signal at an input of the speaker to control/reduce the ambient acoustic noise outside of the device. In addition, the active noise cancellation circuitry provides an inverse anti-noise signal to an input of the magnetic radiator. The magnetic fields produced by the speaker driven by the anti-noise signal and the magnetic radiator driven by the inverse anti-noise signal cancel each other out through phase cancellation such that a hearing aid using a telecoil coupled to the audio device does not produce significant audio waves based on either of these signals. Other embodiments are also described.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: July 14, 2015
    Assignee: Apple Inc.
    Inventors: Ruchir M. Dave, Shaohai Chen
  • Patent number: 9084036
    Abstract: In one aspect, a method for performing signal source localization is provided. The method comprises the steps of obtaining compressive measurements of an acoustic signal or other type of signal from respective ones of a plurality of sensors, processing the compressive measurements to determine time delays between arrivals of the signal at different ones of the sensors, and determining a location of a source of the signal based on differences between the time delays. The method may be implemented in a processing device that is configured to communicate with the plurality of sensors. In an illustrative embodiment, the compressive measurements are obtained from respective ones of only a designated subset of the sensors, and a non-compressive measurement is obtained from at least a given one of the sensors not in the designated subset, with the time delays between the arrivals of the signal at different ones of the sensors being determined based on the compressive measurements and the non-compressive measurement.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: July 14, 2015
    Assignee: Alcatel Lucent
    Inventors: Hong Jiang, Boyd T. Mathews, Paul A. Wilford
  • Patent number: 9078058
    Abstract: The two-way wireless speaker system of this invention increases sound fidelity by enabling speakers to acknowledge receipt of audio data packets. This provides increased functionality because the audio hub can receive data not only from wired inputs, but also wireless transmission from computer, cell phone, and other sources. Audio hub can use information from speaker to customize/adjust audio signal for each speaker independently, giving better audio quality and synchronization among speakers.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: July 7, 2015
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Daniel S. Jochelson
  • Patent number: 9065384
    Abstract: A system and method is disclosed for selecting between two electronic signals, one of high quality, such as music audio, and the other of low quality, such as telephone call audio, in a smart phone, tablet or other device. In one embodiment, when the low quality signal is to be used this is accomplished by disabling the amplifier output to disconnect the high quality audio signal from the output port, rather than by means of a switch between the amplifier and the output port as in the prior art. This eliminates degradation of the signal due to the switch when the high quality signal is to be used. The amplifier typically has an associated feedback resistor network, and this may also be disconnected by means of a switch when the low quality signal is to be used, thus preventing distortion of the low quality signal due to the feedback network being a parallel load to the output port.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: June 23, 2015
    Assignee: ESS Technology, Inc.
    Inventors: Robert L. Blair, Hu Jing Yao, Dustin Dale Forman, A. Martin Mallinson
  • Patent number: 9036827
    Abstract: Ultrasonic signals are used to transmit sounds from a modulated ultrasonic generator to other locations from which the sounds appear to emanate. In particular, an ultrasonic carrier is modulated with an audio signal and demodulated on passage through the atmosphere. The carrier frequencies are substantially higher than those of prior systems, e.g., at least 60 kHz, and the modulation products thus have frequencies which are well above the audible range of humans; as a result, these signals are likely harmless to individuals who are within the ultrasonic fields of the system. The signals may be steered to moving locations, and various measures are taken to minimize distortion and maximize efficiency.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: May 19, 2015
    Assignee: Massachusetts Institute of Technology
    Inventor: F. Joseph Pompei
  • Patent number: 9025775
    Abstract: An apparatus for enhancing a multichannel audio signal comprising at least two channels configured to: estimate a value representing a direction of arrival associated with a first audio signal from at least a first channel and a second audio signal from at least a second channel of at least two channels of a multichannel audio signal; determine a scaling factor dependent on the direction of arrival associated with the first audio signal and the second audio signal; and apply the scaling factor to a parameter associated with a difference in audio signal levels between the first audio signal and the second audio sign.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: May 5, 2015
    Assignee: Nokia Corporation
    Inventor: Pasi Ojala
  • Patent number: 9008332
    Abstract: A processing chip for a digital microphone and related input circuit and a digital microphone are described herein. In one aspect, the input circuit for a processing chip of a digital microphone includes: a PMOS transistor, a resistor, a current source, and a low-pass filter. The described processing chip possesses high anti high-frequency interference capabilities and the described input circuit possesses high high-frequency power supply rejection ratio.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: April 14, 2015
    Assignee: Beijing KT Micro, Ltd.
    Inventors: Wenjing Wang, Jianting Wang, Rongrong Bai, Jing Cao
  • Patent number: 8917875
    Abstract: A circuit for operating loudspeakers includes a first, second, third and fourth loudspeaker circuit, having one input each for injecting a signal and one output each for connecting a loudspeaker input. The loudspeaker circuits are designed to amplify the injected signal and to provide the amplified signal at the outputs thereof. The loudspeaker circuits can, for example, be used for a 2.1 sound system. The three channels for a 2.1 sound system can be implemented by an amplifier circuit with four loudspeaker circuits, one loudspeaker circuit each being required for the two stereo channels left and right. A subwoofer channel can be driven differentially by two loudspeaker circuits. The stereo channels are, by contrast, only still connected to one loudspeaker circuit each, and so the stereo channels require at least one further common ground cable.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: December 23, 2014
    Assignee: Infineon Technologies AG
    Inventors: Christoph Braun, Thomas Duda, Torsten Hinz
  • Patent number: 8897463
    Abstract: A canalphone system may include a canalphone housing, and a first high frequency driver carried within the canalphone housing. The system may also include a second high frequency driver carried within the canalphone housing where the second high frequency driver is tuned with the first high frequency driver to deliver lower distortion than a standard canalphone high frequency driver and/or lower distortion than two standard canalphone high frequency drivers that are not tuned with each other.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: November 25, 2014
    Inventor: Jerry Harvey
  • Patent number: 8891775
    Abstract: The invention discloses a method and an encoder for processing a digital audio stereo signal. A digital audio encoder for coding such audio signal comprises a predictive Temporal Noise Shaping (TNS) filter, a Mid-/Side (M/S) coding unit, a control unit for determining a first prediction gain related to the unmodified L/R signal processed by the TNS filter and for determining a second prediction gain related to the M/S-coded L/R signal processed by the TNS filter, wherein the control unit is adapted to disable TNS-filtering—i.e. to bypass the TNS filter—for a current signal frame, if the first and second prediction gains differ by more than a pre-determined mismatch range.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: November 18, 2014
    Assignee: Dolby International AB
    Inventors: Michael Schug, Harald H. Mundt
  • Patent number: 8879762
    Abstract: A method and apparatus to evaluate a quality of an audio signal, in which the number of effective channels is determined for each of a reference signal of a current frame and a test signal indicative of the reference signal that has passed through an audio codec, and an audio quality evaluation score of the current frame is calculated by evaluating an audio quality of the current frame based on the determined number of effective channels for each of the reference signal and the test signal by means of a predetermined evaluator.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: November 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: In-Yong Choi
  • Patent number: 8879754
    Abstract: A home use sound reproduction system for Hi-fi, with digital signal transfer from a playback unit via a control unit to one or more active loudspeakers, each including or arranged beside an amplifier unit. The control unit is arranged to control sound parameters and send both a digital sound information signal and a power signal for powering the amplifier units, and to superimpose the single ended or differential digital signal together with the power signal on at least one common lead in a cable.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: November 4, 2014
    Assignee: Actiwave AB
    Inventor: Risberg par Gunnars
  • Patent number: 8861745
    Abstract: A method of compensating for noise in a receiver having a first receiver unit and a second receiver unit, the method includes receiving a first transmission at the first receiver unit, the first transmission having a first signal component and a first noise component; receiving a second transmission at the second receive unit, the second transmission having a second signal component and a second noise component; determining whether the first noise component and the second noise component are incoherent and; only if it is determined that the first and second noise components are incoherent, processing the first and second transmissions in a first processing path, wherein the first processing path is configured to compensate for incoherent noise.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: October 14, 2014
    Assignee: Cambridge Silicon Radio Limited
    Inventors: Kuan-Chieh Yen, Xuejing Sun, Jeffrey S. Chisholm
  • Patent number: 8855329
    Abstract: An active noise control (ANC) system may be implemented to both sides of a fan, such that both directions of the noise emitting are treated to reduce the overall noise. The impact on airflow is minimal, and the technique is very effective in a broad range of low frequencies. Passive sound-absorbing materials may be included for attenuation of high frequencies. The resulting quiet fan produces a low level of noise compared to any other device based on fan, which produces the same capacity of airflow. The quiet fan may be incorporated in any mechanical system which requires airflow induction such as: computers, air conditioners, machines, and more.
    Type: Grant
    Filed: January 20, 2008
    Date of Patent: October 7, 2014
    Assignee: Silentium Ltd.
    Inventors: Alon Slapak, Tzvika Fridman, Ofira Rubin
  • Patent number: 8848947
    Abstract: A low-noise pre-amplifier with an active load element is integrated into a microphone. The microphone has an acoustic sensor coupled to the intrinsic pre-amplifier. A controllable current source is coupled to the intrinsic pre-amplifier and supplies a pre-amplifier bias current. A current source controller is coupled to the current source and controls the amplitude of the pre-amplifier bias current to maintain the intrinsic pre-amplifier at a bias point at which the intrinsic pre-amplifier amplifies microphone signals produced by the acoustic sensor. The intrinsic pre-amplifier may be actively regulated at the pre-determined bias point using negative feedback. Alternatively, the intrinsic pre-amplifier may be set to the pre-determined bias point by sweeping the pre-amplifier bias current for the intrinsic pre-amplifier over a range of currents.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 30, 2014
    Assignee: BlackBerry Limited
    Inventor: Jens Kristian Poulsen
  • Patent number: 8848934
    Abstract: Method, user terminal and computer program product for controlling audio signals at the user device during a communication session between the user device and a remote node, in which a primary audio signal is received at audio input means of the user device for transmission to the remote node in the communication session. It is determined whether the user device is operating in (i) a first mode in which secondary audio signals output from the user device are likely to disturb the primary audio signal received at the audio input means, or (ii) a second mode in which secondary audio signals output from the user device are not likely to disturb the primary audio signal received at the audio input means.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: September 30, 2014
    Assignee: Skype
    Inventor: Nils Ohlmeier
  • Patent number: 8818005
    Abstract: A switch controller is provided that uses one or more capacitors to generate a slow turn on/slow turn off switch control signals to suppress audible switching noise in an audio switch. In some embodiments, an analog inverter and a capacitor are used to generate the switch control signals, while in other embodiments two capacitors are used to generate the switch control signals. To conserve power between switching states, routing logic is provided that ties the switch control signals to respective voltage rails and disables selected portions of the switch controller.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: August 26, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Tyler Daigle, Julie Stultz
  • Patent number: 8804970
    Abstract: An audio encoder has a common preprocessing stage, an information sink based encoding branch such as spectral domain encoding branch, a information source based encoding branch such as an LPC-domain encoding branch and a switch for switching between these branches at inputs into these branches or outputs of these branches controlled by a decision stage. An audio decoder has a spectral domain decoding branch, an LPC-domain decoding branch, one or more switches for switching between the branches and a common post-processing stage for post-processing a time-domain audio signal for obtaining a post-processed audio signal.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: August 12, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Bernhard Grill, Stefan Bayer, Guillaume Fuchs, Stefan Geyersberger, Ralf Geiger, Johannes Hilpert, Ulrich Kraemer, Jeremie Lecomte, Markus Multrus, Max Neuendorf, Harald Popp, Nikolaus Rettelbach, Frederik Nagel, Sascha Disch, Juergen Herre, Yoshikazu Yokotani, Stefan Wabnik, Gerald Schuller, Jens Hirschfeld
  • Patent number: 8761410
    Abstract: The present technology provides robust, high quality dereverberation of an acoustic signal which can overcome or substantially alleviate the problems associated with the diverse and dynamic nature of the surrounding acoustic environment. The present technology utilizes acoustic signals received from a plurality of microphones to carry out a multi-faceted analysis which accurately identifies reverberation based on the correlation between the acoustic signals. Due to the spatial distance between the microphones and the variation in reflection paths present in the surrounding acoustic environment, the correlation between the acoustic signals can be used to accurately determine whether portions of one or more of the acoustic signals contain desired speech or undesired reverberation. These correlation characteristics are then used to generate signal modifications applied to one or more of the received acoustic signals to preserve speech and reduce reverberation.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: June 24, 2014
    Assignee: Audience, Inc.
    Inventors: Carlos Avendano, Carlo Murgia