Patents Examined by Kyle Riddle
  • Patent number: 6866013
    Abstract: A variable camshaft timing mechanisms having a vane/housing format is provided. Working hydraulic chambers are created by imposing either single or multiple vanes of a rotor attached to the camshaft into a cavity in a housing that is attached to the camshaft sprocket. Fluid is allowed to normally exhaust from the hydraulic chamber during normal phasing until the rotor nears the end of its travel.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: March 15, 2005
    Assignee: Borgwarner Inc.
    Inventor: Franklin R. Smith
  • Patent number: 6779496
    Abstract: A pressure reservoir is used to exert pressure on a hydraulic system with which, a gas exchange valve, for instance, of an internal combustion engine can be actuated. The pressure reservoir includes a housing and a piston that is prestressed in operation by a device. To enable making the pressure reservoir as small as possible, it is proposed that the device which prestresses the piston of the pressure reservoir has a characteristic force-travel curve, in one range of motion of the piston, that has a slope which differs from the slope in a different range of motion of the piston.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: August 24, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Hermann Gaessler, Udo Diehl, Karsten Mischker, Rainer Walter, Juergen Schiemann, Christian Grosse, Volker Beuche, Stefan Reimer
  • Patent number: 6772718
    Abstract: The present invention relates to a valve system for controlling flow of gas into or out of a variable volume chamber (8) of an internal combustion engine or a compressor. The valve system comprises a gas flow control valve (5) which opens to permit flow of gas into or out of the variable volume chamber (8); a hydraulic actuator (4) connected to the gas flow control valve (5); a pump (1) for pressurizing hydraulic fluid; a reservoir of hydraulic fluid (6); and a control system (2, 3, 21, 22, 23, 24, 25, 26, 27, 28, 29) which controls opening and closing of the gas control valve (5) by controlling flow of hydraulic fluid to the hydraulic actuator (4) from the pump (1) and flow of hydraulic fluid from hydraulic actuator (4) to the reservoir (6).
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: August 10, 2004
    Assignee: Lotus Cars Limited
    Inventor: Jeffrey Allen
  • Patent number: 6769385
    Abstract: A velocity control system for an engine valve is provided. The system includes a valve having a housing defining an opening, a chamber adapted to receive a fluid, a first fluid passageway connecting the opening with the chamber, a second fluid passageway connecting the opening with the chamber, and a third fluid passageway connecting the opening with the chamber. A piston is slidably disposed in the chamber and is moveable from a first position to a second position. The movement of the piston from the first position to the second position forces fluid from the chamber at a first flow rate during movement of the piston through a first travel distance and at a second flow rate during movement of the piston through a second travel distance. The first flow rate is greater than the second flow rate. A check valve is adapted to prevent fluid from flowing from the chamber through the first fluid passageway when the piston is moving from the first position to the second position.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: August 3, 2004
    Assignee: Caterpillar Inc
    Inventor: David Y. Chang
  • Patent number: 6758177
    Abstract: The present invention provides an improvement over conventional engine controls by providing a method and system that operates a variable valve system immediately subsequent to engine start, and disengages the variable valve system when engine performance is unacceptable. If the variable valve system is disengaged after engine start due to poor engine performance, a time delay occurs to allow the engine to create a sufficient amount of oil pressure to operate the variable valve system.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: July 6, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Daniel Lee McKay, Jeffrey M. Pfeiffer, Amanpal S. Grewal
  • Patent number: 6758179
    Abstract: The present invention provides a method and apparatus to control the rate of change of the variable cam phasing system during transient engine operating conditions. It does this primarily to maintain combustion stability. The invention controls the rate of change of the variable cam phasing system based upon the operating point of the engine, the desired operating point of the engine, and the rate of change of the variable cam phasing system necessary to maintain combustion stability.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: July 6, 2004
    Assignee: Delphi Technologies, Inc.
    Inventors: Daniel Lee McKay, Jeffrey M. Pfeiffer, Amanpal S. Grewal
  • Patent number: 6755166
    Abstract: The present invention provides a means to reduce holding current and driving current of EMVD's effectively and practically and to provide soft landing of a valve. The invention incorporates a nonlinear mechanical transformer as part of an EMVD system. The nonlinear mechanical transformer is designed for the spring and the inertia in the EMVD to have desirable nonlinear characteristics. With the presently disclosed invention, the holding current and driving current are reduced and soft valve landing is achieved. The nonlinear characteristics of a nonlinear mechanical transformer can be implemented in various ways. The concept of the invention can be applied not only to EMVD's but also to general reciprocating and bi-stable servomechanical systems, where smooth acceleration, soft landing, and small power consumption are desired.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: June 29, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Woo Sok Chang, Thomas A. Keim, John G. Kassakian
  • Patent number: 6755165
    Abstract: The invention controls the opening of an oil control valve (OCV), which controls the operation of a variable valve timing mechanism in an internal combustion engine, according to a duty ratio of a driving pulse signal. An electronic control unit (ECU) performs feedback control on a duty ratio DR of the driving pulse signal during ordinary operation based on a target value and an actual value of the valve timing. When the oil temperature is low (i.e., when the operating oil viscosity is high), the ECU controls the valve timing of the engine by repeating an inching operation that maintains the duty ratio DR of the signal at a large value (i.e., 0% or 100%) for a predetermined hold time so as to operate the variable valve timing mechanism, and then maintaining the duty ratio DR of the signal at a value (50%) that does not operate the variable valve timing mechanism.
    Type: Grant
    Filed: February 27, 2003
    Date of Patent: June 29, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinya Kondou, Hiroyasu Koyama
  • Patent number: 6755161
    Abstract: The present invention relates to a gas exchange valve drive for a valve-controlled combustion engine with a hollow cylindrical rotor (16) to be coupled with a valve member (12) and a stator (18), wherein the rotor (16) comprises permanent-magnetic rings (30) concentrically arranged one above the other, the stator (18) is at least partially constructed of a soft magnetic material and comprises at least one tooth (22) facing towards the rotor (16), the stator (18) comprises a radially inner magnetically conductive area (50) and a radially outer magnetically conductive area (52), with the rings (30) of the rotor (16) being arranged between the inner area (50) and the outer area (52) of the stator (18), and the outer area (52) of the stator (18) in at least one partial section (54) is designed with a C-shaped cross-section and comprises at least one stator coil (28).
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: June 29, 2004
    Assignee: Compact Dynamics GmbH
    Inventors: Andreas Gründl, Bernhard Hoffmann
  • Patent number: 6752106
    Abstract: A pressure pulse generator comprising a circuit (12) filled with a pressure fluid, and at least one communication channel (15) that is connected to the circuit and via which the pressure fluid can flow into and out of the circuit. The pressure pulse generator comprises a first pair (8, 9) and a second pair (10, 11) of electrically controlled valves that are connected in series, and the first pair of valves (8,9) is arranged in said circuit (12) upstream the at least one communication channel (15), and the second pair of valves (10, 11) is arranged in said circuit (12) downstream the at least one communication channel (15).
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: June 22, 2004
    Assignee: Cargine Engineering AB
    Inventor: Mats Hedman
  • Patent number: 6748911
    Abstract: An engine for a marine drive has a combustion chamber. An engine body of the engine defines an air intake port communicating with the combustion chamber. An air induction system communicates with the air intake port to introduce air to the combustion chamber through the air intake port. An exhaust system communicates with the combustion chamber through an exhaust port. Intake and exhaust valves move between an opening position and a closing position of the intake port and the exhaust port, respectively. Intake and exhaust camshafts actuate the intake valve and the exhaust valve, respectively. A VVT mechanism is associated with at least one of the camshafts and changes an actuating timing of the camshaft. The VVT mechanism includes a solenoid actuator that varies a hydraulic flow in the VVT mechanisms to change the actuating timing of the camshaft. The solenoid actuator can be operated to receive electric power from a power source. An ECU controls the solenoid actuator based upon a control characteristic.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: June 15, 2004
    Assignee: Yamaha Marine Kabushiki Kaisha
    Inventor: Goichi Katayama
  • Patent number: 6745734
    Abstract: A variable valve actuating mechanism includes an output cam pivotally disposed upon an input shaft of an engine. First and second frame members are disposed upon the input shaft on respective sides of the input cam lobe. A first link arm is pivotally coupled at a first end thereof to the first and second frame members. A rocker arm assembly is pivotally coupled at a first end thereof to a second end of the link arm. The rocker arm assembly carries a cam follower that engages an input cam lobe of the input shaft. A biasing means is grounded to the first and second frame members, and biases the cam follower into engagement with the input cam lobe.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: June 8, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: Ronald J. Pierik
  • Patent number: 6742485
    Abstract: A vane-type cam phaser wherein a locking pin assembly is disposed between a rotor and a stator of the phaser to selectively couple the rotor and stator together under certain operating conditions, for example, during engine start-up. The central axis of the locking pin assembly is disposed in the rotor parallel to the rotational axis of the phaser. The pin is spring loaded in a default position and is guided through its axial movement by two cylindrical guide surfaces—an inner guide surface and an outer guide surface. The lengths of these guide surfaces are optimized to minimize binding and sluggish operation of the pin caused by lateral forces exerted on the pin by the stator when in operation. The outer guide surface to inner guide surface ratio (L/I) is preferably greater than 2.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: June 1, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: Thomas H. Lichti
  • Patent number: 6739294
    Abstract: A manifold for housing high-pressure oil on a camless engine includes an extruded aluminum body having first and second ends. First, second and third extruded channels are formed in the body and each extends from the first end to the second end of the body. The manifold has a plurality of switching valve mounting bores configured to receive a plurality of switching valves operative to alternately communicate the channels with intake and exhaust valves of an engine to which the manifold is mounted to affect movement of the valves.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: May 25, 2004
    Assignee: General Motors Corporation
    Inventors: Jennifer L. Liedtke, Thomas E. Wenzel
  • Patent number: 6739298
    Abstract: In a valve timing adjusting apparatus, rotating response speed of a vane rotor and a moving speed of a lock piston are changed according to changes of oil temperature and pressure. It sometimes happens that the lock piston passes the fitting hole before the lock piston is fitted in the fitting hole. Timing of actuating a solenoid valve is retard by a given delay time from timing of actuating a spool valve. The given delay time is decided by a map based on sensor signals representing the oil temperature and pressure input to ECU. The given delay time is shorter as the oil temperature increases and longer as the oil pressure increases.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: May 25, 2004
    Assignee: Denso Corporation
    Inventors: Shigeyuki Kusano, Masaomi Inoue
  • Patent number: 6739295
    Abstract: It is an object of the present invention to provide a compression ignition internal combustion engine capable of making compatible an increase in compression self-ignition operating area with an optimum output torque control in the operating area and also smoothly switching between a self-ignition combustion and a spark ignition combustion. The compression ignition internal combustion engine operates by switching between the spark ignition combustion using an ignition device and the compression ignition combustion which self-ignites a mixture by piston compression. Variable valve mechanisms vary at least one of the valve timings and valve lifts of an intake valve and an exhaust valve. Intake air is regulated to vary the amount of air intake into a combustion chamber on the upstream side of a combustion chamber inlet of the compression ignition internal combustion engine.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: May 25, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Shiro Yamaoka, Toshiharu Nogi, Minoru Oosuga, Takuya Shiraishi, Shinji Nakagawa, Yuusuke Kihara
  • Patent number: 6739293
    Abstract: Hydraulic engine valve actuation systems and methods for internal combustion engines. The systems utilize a proportional valve to regulate the flow of a working fluid to and from a hydraulic actuator controlling the engine valve position. The position of the proportional valve is controlled by one or more high speed valves to control various engine valve parameters, including engine valve takeoff and landing velocities. Returning all valves to a known starting position between engine valve events avoids accumulation of errors in proportional valve positioning. Embodiments using spool valves for the high speed valves and the proportional valve, and spring return and hydraulic return for the engine valve, are disclosed. A specially shaped spool in the proportional valve provides enhanced control over the engine valve operation. Various further alternate embodiments are disclosed.
    Type: Grant
    Filed: June 5, 2002
    Date of Patent: May 25, 2004
    Assignee: Sturman Industries, Inc.
    Inventors: Christopher Wayne Turner, Miguel Angelo Raimao, Guy Robert Babbitt
  • Patent number: 6736094
    Abstract: A method that uses a dither signal for reducing hysteresis effect in a variable cam timing system is provided. The method includes the steps of: a) providing a dither signal having at least two switchable frequencies; b) determining the frequency characteristics of an engine speed; c) determining at least one frequency beating point in relation to a neighborhood of an engine crank RPM values; and d) changing the dither signal frequency when the engine is operating within the neighborhood of the engine crank RPM values. Thereby frequency beating effect is reduced.
    Type: Grant
    Filed: April 4, 2003
    Date of Patent: May 18, 2004
    Assignee: Borgwarner Inc.
    Inventors: Earl Ekdahl, Danny R. Taylor
  • Patent number: 6736093
    Abstract: A device for controlling at least one gas-changing valve (10) of an internal combustion engine includes a valve adjuster (20) with an adjusting piston (16) limiting two pressure chamber (17, 18). The lower pressure chamber (18) is permanently acted upon by fluid pressure and the upper pressure chamber (17) can be interchangeably pressurized or depressurized with the fluid pressure. The braking of the adjusting piston (16) before reaching its upper end position affecting the closing position of the gas-changing valve, the return (22) of the upper pressure chamber (17) is divided into at least two axially spaced run-off openings (221, 222), of which the lower run-off opening (222) can be closed by the adjusting piston (16) and the upper run-off opening (221) is connected with the lower run-off opening (222) via a throttle opening (23) controllable in an opening cross section.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: May 18, 2004
    Assignee: Robert Bosch GmbH
    Inventors: Uwe Hammer, Bjoern Schuetz
  • Patent number: 6736092
    Abstract: In an internal-combustion engine equipped with an electronically controlled hydraulic system for variable actuation of the inlet and/or exhaust valves of the engine, the hydraulic system for actuation of the valves includes, for each engine valve, a solenoid valve for controlling the corresponding hydraulic actuator. Each solenoid valve is controlled according to a pre-set control criterion according to the operating parameters of the engine, said pre-set control criterion corresponding to reference operating conditions of the hydraulic fluid and, in particular, to the value of viscosity of the hydraulic fluid, which varies with temperature. The aforesaid control criterion is, however, adjusted according to an estimated deviation between reference operating conditions of the hydraulic fluid and actual operating conditions of the hydraulic fluid.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: May 18, 2004
    Assignee: C.R.F. Societa Consortile Perazioni
    Inventors: Fabio Borean, Mitzi Puccio